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Forward Modelling

Computational Fluid Dynamics codes:

single CPU → workstation → CPU cluster → GPUs → latest AI processors

(MPI, OpenMP) (CUDA, OpenCL) ?

# processors % of CFD users

<9 25%
9–32 34%

33–256 29%
257–1024 8%

>1024 4%

Navigating the CFD Software Landscape (a survey by Resolved Analytics)
The Computational Fluid Dynamics Revolution Driven by GPU Acceleration (a technical blog
by NVIDIA)
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https://www.resolvedanalytics.com/theflux/comparing-cfd-software
https://developer.nvidia.com/blog/computational-fluid-dynamics-revolution-driven-by-gpu-acceleration/
https://developer.nvidia.com/blog/computational-fluid-dynamics-revolution-driven-by-gpu-acceleration/


Forward Modelling

CPUs vs GPUs: hard to compare, but code running on GPUs can show
speed ups of 1–2 orders of magnitude.

CPU ≈ Maserati, GPU ≈ a truck

The CPU (Maserati) can fetch small
amounts of packages (3–4 passen-
gers) in the RAM quickly whereas a
GPU (the truck) is slower but can
fetch large amounts of memory (∼20
passengers) in one turn.

Do you need a GPU in Deep Learning? (from Towards Data Science on Medium)
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https://towardsdatascience.com/what-is-a-gpu-and-do-you-need-one-in-deep-learning-718b9597aa0d


Forward Modelling

Machine Learning codes:

CPUs ←→ GPUs ←→ latest AI processors

import torch

# are GPUs available?

torch.cuda.is_available()

# a commonly used variable for handling the device

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model = MyModel(args)

# send the model to the device

model.to(device)
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Forward Modelling

CFD models: Machine Learning models:

adhere to governing equations can lack explainability and in-
terpretability

generalise well can struggle to generalise

some rewriting involved when
running on different platforms

platform agnostic (thanks to
well-written libraries)

adjoints can be difficult to for-
mulate and to code

differentiable models
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Forward Modelling

A couple of approaches that use functionality from AI libraries for CFD
programming:

JAX-Fluids A fully-differentiable CFD solver for compressible two-phase
flows (Bezgin et al (2023) 10.1016/j.cpc.2022.108527).

Finite volume method and level sets with numpy and JAX.

AI4PDEs or NN4PDEs Fully-differentiable CFD solver for
incompressible flows (Chen et al (2024) 10.48550/arXiv.2402.17913).

Finite differences and finite elements with pytorch.
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https://doi.org/10.1016/j.cpc.2022.108527
https://doi.org/10.48550/arXiv.2402.17913


Forward Modelling

Aim: to implement numerical discretisations using AI libraries rather
than standard approaches in Fortran / C++.

How: by defining the weights of convolutional neural networks according
to a discretisation instead of calculating them during the process of
“training”. The discretisation coded in this way is exactly identical to the
discretisation coded using standard approaches.

Why: (1) benefit from flexible deployment of code on CPUs, GPUs and
new AI processors; (2) potential speed-up from using the latest powerful
energy-efficient machines; (3) model differentiability for data
assimilation, and uncertainty quantification; (4) elegant combination
with surrogate models.
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Forward Modelling
What is AI4PDEs?

AI4PDEs: realising that many numerical discretisations can be written
as discrete convolutions leads to the fact that a discretised system can be
exactly written as and solved by a convolutional neural network with
predefined weights (i.e. there is no need to train to find the weights).

Boundary Conditions, Initial Conditions
Discretisation (including mesh or grid)

“Traditional approach”
Fortran / C++PETSc

CPUs 3

GPUs (e.g. CUDA)
AI processors (?)

“AI4PDEs approach”
Python

TensorFlow
PyTorch

CPUs 3

GPUs 3

AI processors 3
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Forward Modelling
Control volume discretisation

Example: The Laplacian ∇2C(x, y)

Control volume / finite difference approximation (based on Taylor series
expansions):

∂2C

∂x2
+
∂2C

∂y2

∣∣∣∣
i,j

≈ Ci+1,j − 2Ci,j + Ci−1,j
∆x2

+
φi,j+1 − 2Ci,j + Ci,j−1

∆y2
(1)

For ∆x = 1 = ∆y:

∂2C

∂x2
+
∂2C

∂y2

∣∣∣∣
i,j

≈ (Ci+1,j + Ci−1,j + Ci,j+1 + Ci,j−1 − 4Ci,j) (2)
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Forward Modelling
Convolutional neural network

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-

eli5-way-3bd2b1164a53
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https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Forward Modelling
Convolutional layers

from Dumoulin and Visin (2016) https://github.com/vdumoulin/conv_arithmetic,
10.48550/arXiv.1603.07285
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https://doi.org/10.48550/arXiv.1603.07285


Forward Modelling
Convolutional neural network
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Forward Modelling
Solution process

Solve
∂C

∂t
− κ∇2C = 0 (4)

Predictor
Cn+1,∗ − Cn

∆t
− κ∇2Cn = 0 (5)
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∆t
− κ

2
∇2
(
Cn+1,∗ + Cn

)
= 0 (6)
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Forward Modelling
Results - Advection diffusion
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Forward Modelling
Results - Flow past a bluff body, Re = 200

The Strouhal number is calculated to be 0.142, close to values in the literature
of 0.147. The length and diameter of the re-circulation area are also both close
to values in the literature.
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Forward Modelling
Results - Flow past a bluff body, Re = 200

Computational efficiency:

1283 nodes 2563 nodes 5123 nodes

Intel Xeon 2.3Ghz CPU 165 s 1275 s 14 376 s
NVIDIA Tesla T4 GPU 3 s 11 s 34 s

(2560 CUDA cores)

Linear finite elements with nodes as quoted in table, each running for five time
steps with 20 multigrid iterations per time step.
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Forward Modelling
South Kensington area

CFD details

Quadratic finite elements
Domain size: 4096m × 5120m × 256m (resolution ∼1 m3)
2 billion nodes
4 GPUs: NVIDIA RTX A100
1 hour of time takes 5 hours computation time
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Horizontal cross-sections
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Horizontal cross-sections
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Vertical cross-sections
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Vertical cross-sections
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Forward Modelling
Results - Collapsing water column
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Results - Collapsing water column
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Results - Train carriage

128 million nodes
Quadratic finite elements
22.5 m by 3 m by 3 m (1 cm resolution)
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Results - Train carriage
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Forward Modelling
Results - Shallow water equations

951 by 611 nodes
Domain of 4.75 km by 3.05 km ∆x = 5 m, ∆t = 0.5 s
Snapshots taken at 14, 28, 42 and 56 hours (linear and quadratic
elements).
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Forward Modelling
Summary
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Forward Modelling
Summary

Advantages:

flexibility — the same code runs on CPUs, GPUs, AI processors

speed — potentially extremely fast

concise and readible — well-written libraries with abstraction

usability — code more easier to modify for students and
collaborators

combination with (trained) surrogate models

digital twins

Disadvantages:

certain operations may not be easily written as (fixed) stencils

certain operations might not be efficient
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Forward Modelling
Summary

Progress includes

benchmarks for single-phase incompressible flow [3]

urban flow demonstration (5km by 4km area in South Kensington)

multiphase flow equations [4]

shallow water equations

neutron diffusion equation [5]

Boltzmann transport equation [6]

variable resolution

unstructured meshes (with graph neural network and space-filling
curves) [7]

inverse problems — electrical resistivity inversion

inverse problems — seismic full waveform inversion
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Previous work [1,2] and references for previous slide
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flows on tensor processing units, Computer Physics Communications, 274:108292,
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[3] Chen, Heaney and Pain (2023) Using AI libraries for Incompressible Computational Fluid
Dynamics arXiv preprints 10.48550/arXiv.2402.17913
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equations with interface capturing on structured grids using machine learning libraries,
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[5] Phillips et al. (2023) Solving the Discretised Neutron Diffusion Equations using Neural
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Networks: Applications in Neutron Transport, arXiv preprint, 10.48550/arXiv.2301.09991.

[7] Li et al. (2024) Implementing the Discontinuous-Galerkin Finite Element Method Using
Graph Neural Networks, SSRN preprint 10.2139/ssrn.4698813.

NFFDy Summer School 31 / 32

https://doi.org/10.1007/s42241-020-0050-0
https://doi.org/10.1016/j.cpc.2022.108292
https://doi.org/10.48550/arXiv.2402.17913
https://doi.org/10.1016/j.cma.2024.116974
https://doi.org/10.48550/arXiv.2301.09939
https://doi.org/10.48550/arXiv.2301.09991
https://dx.doi.org/10.2139/ssrn.4698813


Forward Modelling
Acknowledgements

Christopher Pain, Boyang Chen, and others in Department of Earth
Science and Engineering, and Imperial-X.

The AI4PDEs team at the Schmidt Sciences hackathon (Oxford, June
2024).

NFFDy Summer School 32 / 32


	anm1: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


