
Data-driven methods for Fluid Dynamics
I Forward Modelling

Claire Heaney

Applied Modelling and Computation Group (Department of Earth Science and
Engineering) and Imperial-X, Imperial College London, UK

Forward Modelling

Computational Fluid Dynamics codes:

single CPU → workstation → CPU cluster → GPUs → latest AI processors

(MPI, OpenMP) (CUDA, OpenCL) ?

processors % of CFD users

<9 25%
9–32 34%

33–256 29%
257–1024 8%

>1024 4%

Navigating the CFD Software Landscape (a survey by Resolved Analytics)
The Computational Fluid Dynamics Revolution Driven by GPU Acceleration (a technical blog
by NVIDIA)

NFFDy Summer School 2 / 32

https://www.resolvedanalytics.com/theflux/comparing-cfd-software
https://developer.nvidia.com/blog/computational-fluid-dynamics-revolution-driven-by-gpu-acceleration/
https://developer.nvidia.com/blog/computational-fluid-dynamics-revolution-driven-by-gpu-acceleration/

Forward Modelling

CPUs vs GPUs: hard to compare, but code running on GPUs can show
speed ups of 1–2 orders of magnitude.

CPU ≈ Maserati, GPU ≈ a truck

The CPU (Maserati) can fetch small
amounts of packages (3–4 passen-
gers) in the RAM quickly whereas a
GPU (the truck) is slower but can
fetch large amounts of memory (∼20
passengers) in one turn.

Do you need a GPU in Deep Learning? (from Towards Data Science on Medium)

NFFDy Summer School 3 / 32

https://towardsdatascience.com/what-is-a-gpu-and-do-you-need-one-in-deep-learning-718b9597aa0d

Forward Modelling

Machine Learning codes:

CPUs ←→ GPUs ←→ latest AI processors

import torch

are GPUs available?

torch.cuda.is_available()

a commonly used variable for handling the device

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model = MyModel(args)

send the model to the device

model.to(device)

NFFDy Summer School 4 / 32

Forward Modelling

CFD models: Machine Learning models:

adhere to governing equations can lack explainability and in-
terpretability

generalise well can struggle to generalise

some rewriting involved when
running on different platforms

platform agnostic (thanks to
well-written libraries)

adjoints can be difficult to for-
mulate and to code

differentiable models

NFFDy Summer School 5 / 32

Forward Modelling

CFD models: Machine Learning models:

adhere to governing equations can lack explainability and in-
terpretability

generalise well can struggle to generalise

some rewriting involved when
running on different platforms

platform agnostic (thanks to
well-written libraries)

adjoints can be difficult to for-
mulate and to code

differentiable models

NFFDy Summer School 5 / 32

Forward Modelling

A couple of approaches that use functionality from AI libraries for CFD
programming:

JAX-Fluids A fully-differentiable CFD solver for compressible two-phase
flows (Bezgin et al (2023) 10.1016/j.cpc.2022.108527).

Finite volume method and level sets with numpy and JAX.

AI4PDEs or NN4PDEs Fully-differentiable CFD solver for
incompressible flows (Chen et al (2024) 10.48550/arXiv.2402.17913).

Finite differences and finite elements with pytorch.

NFFDy Summer School 6 / 32

https://doi.org/10.1016/j.cpc.2022.108527
https://doi.org/10.48550/arXiv.2402.17913

Forward Modelling

Aim: to implement numerical discretisations using AI libraries rather
than standard approaches in Fortran / C++.

How: by defining the weights of convolutional neural networks according
to a discretisation instead of calculating them during the process of
“training”. The discretisation coded in this way is exactly identical to the
discretisation coded using standard approaches.

Why: (1) benefit from flexible deployment of code on CPUs, GPUs and
new AI processors; (2) potential speed-up from using the latest powerful
energy-efficient machines; (3) model differentiability for data
assimilation, and uncertainty quantification; (4) elegant combination
with surrogate models.

NFFDy Summer School 7 / 32

Forward Modelling
What is AI4PDEs?

AI4PDEs: realising that many numerical discretisations can be written
as discrete convolutions leads to the fact that a discretised system can be
exactly written as and solved by a convolutional neural network with
predefined weights (i.e. there is no need to train to find the weights).

Boundary Conditions, Initial Conditions
Discretisation (including mesh or grid)

“Traditional approach”
Fortran / C++PETSc

CPUs 3

GPUs (e.g. CUDA)
AI processors (?)

“AI4PDEs approach”
Python

TensorFlow
PyTorch

CPUs 3

GPUs 3

AI processors 3

NFFDy Summer School 8 / 32

Forward Modelling
Control volume discretisation

Example: The Laplacian ∇2C(x, y)

Control volume / finite difference approximation (based on Taylor series
expansions):

∂2C

∂x2
+
∂2C

∂y2

∣∣∣∣
i,j

≈ Ci+1,j − 2Ci,j + Ci−1,j
∆x2

+
φi,j+1 − 2Ci,j + Ci,j−1

∆y2
(1)

For ∆x = 1 = ∆y:

∂2C

∂x2
+
∂2C

∂y2

∣∣∣∣
i,j

≈ (Ci+1,j + Ci−1,j + Ci,j+1 + Ci,j−1 − 4Ci,j) (2)

NFFDy Summer School 9 / 32

Forward Modelling

∂2C

∂x2
+
∂2C

∂y2

∣∣∣∣
i,j

≈
∑

array
entries




0 1 0
1 −4 1
0 1 0


�



Ci−1,j+1 Ci,j+1 Ci+1,j+1

Ci−1,j Ci,j Ci+1,j

Ci−1,j−1 Ci,j−1 Ci+1,j−1


 (3)

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

NFFDy Summer School 10 / 32

Forward Modelling

∂2C

∂x2
+
∂2C

∂y2

∣∣∣∣
i,j

≈
∑

array
entries




0 1 0
1 −4 1
0 1 0


�



Ci−1,j+1 Ci,j+1 Ci+1,j+1

Ci−1,j Ci,j Ci+1,j

Ci−1,j−1 Ci,j−1 Ci+1,j−1


 (3)

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

-4C11 1C211C01

1C10

1C12

∇2C11

NFFDy Summer School 10 / 32

Forward Modelling

∂2C

∂x2
+
∂2C

∂y2

∣∣∣∣
i,j

≈
∑

array
entries




0 1 0
1 −4 1
0 1 0


�



Ci−1,j+1 Ci,j+1 Ci+1,j+1

Ci−1,j Ci,j Ci+1,j

Ci−1,j−1 Ci,j−1 Ci+1,j−1


 (3)

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

-4C21 1C311C11

1C20

1C22

∇2C21

NFFDy Summer School 10 / 32

Forward Modelling
Convolutional neural network

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-

eli5-way-3bd2b1164a53

NFFDy Summer School 11 / 32

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Forward Modelling
Convolutional layers

from Dumoulin and Visin (2016) https://github.com/vdumoulin/conv_arithmetic,
10.48550/arXiv.1603.07285

NFFDy Summer School 12 / 32

https://github.com/vdumoulin/conv_arithmetic
https://doi.org/10.48550/arXiv.1603.07285

Forward Modelling
Convolutional neural network

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

input

w00

w01

w02

w10

w11

w12

w20

w21

w22

kernel or filter

f
(∑

i,j w �C[i−1:i+1,j−1:j+1]
)

feature map

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

input

w00

w01

w02

w10

w11

w12

w20

w21

w22

kernel or filter

f
(∑

i,j w �C[i−1:i+1,j−1:j+1]
)

feature map

NFFDy Summer School 13 / 32

Forward Modelling
Convolutional neural network

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

input

w00

w01

w02

w10

w11

w12

w20

w21

w22

kernel or filter

f
(∑

i,j w �C[i−1:i+1,j−1:j+1]
)

feature map

NFFDy Summer School 13 / 32

Forward Modelling
Convolutional neural network

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

input

w00

w01

w02

w10

w11

w12

w20

w21

w22

kernel or filter

f
(∑

i,j w �C[i−1:i+1,j−1:j+1]
)

feature map

NFFDy Summer School 13 / 32

Forward Modelling
Convolutional neural network

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

input

w00

w01

w02

w10

w11

w12

w20

w21

w22

kernel or filter

f
(∑

i,j w �C[i−1:i+1,j−1:j+1]
)

feature map

NFFDy Summer School 13 / 32

Forward Modelling
Convolutional neural network

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

input

w00

w01

w02

w10

w11

w12

w20

w21

w22

kernel or filter

f
(∑

i,j w �C[i−1:i+1,j−1:j+1]
)

feature map

NFFDy Summer School 13 / 32

Forward Modelling
Convolutional neural network

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

input

w00

w01

w02

w10

w11

w12

w20

w21

w22

kernel or filter

f
(∑

i,j w �C[i−1:i+1,j−1:j+1]
)

feature map

NFFDy Summer School 13 / 32

Forward Modelling
Convolutional neural network

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

input

w00

w01

w02

w10

w11

w12

w20

w21

w22

kernel or filter

f
(∑

i,j w �C[i−1:i+1,j−1:j+1]
)

feature map

NFFDy Summer School 13 / 32

Forward Modelling
Convolutional neural network

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

input

w00

w01

w02

w10

w11

w12

w20

w21

w22

kernel or filter

f
(∑

i,j w �C[i−1:i+1,j−1:j+1]
)

feature map

NFFDy Summer School 13 / 32

Forward Modelling
Convolutional neural network

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

input

w00

w01

w02

w10

w11

w12

w20

w21

w22

kernel or filter

f
(∑

i,j w �C[i−1:i+1,j−1:j+1]
)

feature map

NFFDy Summer School 13 / 32

Forward Modelling
Convolutional neural network

C00

C01

C02

C03

C04

C05

C10

C11

C12

C13

C14

C15

C20

C21

C22

C23

C24

C25

C30

C31

C32

C33

C34

C35

C40

C41

C42

C43

C44

C45

C50

C51

C52

C53

C54

C55

input

0

0

0

0

1

1

1 1-4

kernel or filter

f
(∑

i,j w �C[i−1:i+1,j−1:j+1]
)

feature map

NFFDy Summer School 13 / 32

Forward Modelling
Solution process

Solve
∂C

∂t
− κ∇2C = 0 (4)

Predictor
Cn+1,∗ − Cn

∆t
− κ∇2Cn = 0 (5)

Corrector
Cn+1 − Cn

∆t
− κ

2
∇2
(
Cn+1,∗ + Cn

)
= 0 (6)

Predictor:

Cn+1,∗
i,j − Cn

i,j

∆t
− κ

∑

array
entries




0 1 0
1 −4 1
0 1 0


�



Cn
i−1,j+1 Cn

i,j+1 Cn
i+1,j+1

Cn
i−1,j Cn

i,j Cn
i+1,j

Cn
i−1,j−1 Cn

i,j−1 Cn
i+1,j−1


 = 0

(7)

NFFDy Summer School 14 / 32

Forward Modelling
Results - Advection diffusion

NFFDy Summer School 15 / 32

Forward Modelling
Results - Flow past a bluff body, Re = 200

The Strouhal number is calculated to be 0.142, close to values in the literature
of 0.147. The length and diameter of the re-circulation area are also both close
to values in the literature.

NFFDy Summer School 16 / 32

Forward Modelling
Results - Flow past a bluff body, Re = 200

Computational efficiency:

1283 nodes 2563 nodes 5123 nodes

Intel Xeon 2.3Ghz CPU 165 s 1275 s 14 376 s
NVIDIA Tesla T4 GPU 3 s 11 s 34 s

(2560 CUDA cores)

Linear finite elements with nodes as quoted in table, each running for five time
steps with 20 multigrid iterations per time step.

NFFDy Summer School 17 / 32

Forward Modelling
South Kensington area

CFD details

Quadratic finite elements
Domain size: 4096m × 5120m × 256m (resolution ∼1 m3)
2 billion nodes
4 GPUs: NVIDIA RTX A100
1 hour of time takes 5 hours computation time

NFFDy Summer School 18 / 32

Forward Modelling
Horizontal cross-sections

NFFDy Summer School 19 / 32

Forward Modelling
Horizontal cross-sections

NFFDy Summer School 19 / 32

Forward Modelling
Vertical cross-sections

NFFDy Summer School 20 / 32

Forward Modelling
Vertical cross-sections

NFFDy Summer School 20 / 32

Forward Modelling
Results - Collapsing water column

NFFDy Summer School 21 / 32

Forward Modelling
Results - Collapsing water column

NFFDy Summer School 21 / 32

Forward Modelling
Results - Collapsing water column

NFFDy Summer School 21 / 32

Forward Modelling
Results - Train carriage

128 million nodes
Quadratic finite elements
22.5 m by 3 m by 3 m (1 cm resolution)

NFFDy Summer School 22 / 32

Forward Modelling
Results - Train carriage

NFFDy Summer School 23 / 32

Forward Modelling
Results - Train carriage

NFFDy Summer School 23 / 32

Forward Modelling
Results - Train carriage

NFFDy Summer School 23 / 32

Forward Modelling
Results - Shallow water equations

951 by 611 nodes
Domain of 4.75 km by 3.05 km ∆x = 5 m, ∆t = 0.5 s
Snapshots taken at 14, 28, 42 and 56 hours (linear and quadratic
elements).

NFFDy Summer School 24 / 32

Forward Modelling
Results - Shallow water equations

951 by 611 nodes
Domain of 4.75 km by 3.05 km ∆x = 5 m, ∆t = 0.5 s
Snapshots taken at 14, 28, 42 and 56 hours (linear and quadratic
elements).

NFFDy Summer School 25 / 32

Forward Modelling
Results - Shallow water equations

951 by 611 nodes
Domain of 4.75 km by 3.05 km ∆x = 5 m, ∆t = 0.5 s
Snapshots taken at 14, 28, 42 and 56 hours (linear and quadratic
elements).

NFFDy Summer School 26 / 32

Forward Modelling
Results - Shallow water equations

951 by 611 nodes
Domain of 4.75 km by 3.05 km ∆x = 5 m, ∆t = 0.5 s
Snapshots taken at 14, 28, 42 and 56 hours (linear and quadratic
elements).

NFFDy Summer School 27 / 32

Forward Modelling
Summary

NFFDy Summer School 28 / 32

Forward Modelling
Summary

Advantages:

flexibility — the same code runs on CPUs, GPUs, AI processors

speed — potentially extremely fast

concise and readible — well-written libraries with abstraction

usability — code more easier to modify for students and
collaborators

combination with (trained) surrogate models

digital twins

Disadvantages:

certain operations may not be easily written as (fixed) stencils

certain operations might not be efficient

NFFDy Summer School 29 / 32

Forward Modelling
Summary

Progress includes

benchmarks for single-phase incompressible flow [3]

urban flow demonstration (5km by 4km area in South Kensington)

multiphase flow equations [4]

shallow water equations

neutron diffusion equation [5]

Boltzmann transport equation [6]

variable resolution

unstructured meshes (with graph neural network and space-filling
curves) [7]

inverse problems — electrical resistivity inversion

inverse problems — seismic full waveform inversion

NFFDy Summer School 30 / 32

Forward Modelling
Previous work [1,2] and references for previous slide

[1] Zhao et al., (2020) A TensorFlow-based new high-performance computational framework
for CFD, Journal of Hydrodynamics 32(4):735–746, 10.1007/s42241-020-0050-0.

[2] Wang et al., (2022) A TensorFlow simulation framework for scientific computing of fluid
flows on tensor processing units, Computer Physics Communications, 274:108292,
10.1016/j.cpc.2022.108292.

[3] Chen, Heaney and Pain (2023) Using AI libraries for Incompressible Computational Fluid
Dynamics arXiv preprints 10.48550/arXiv.2402.17913

[4] Chen, Heaney, Gomes, Matar, Pain (2024) Solving the discretised multiphase flow
equations with interface capturing on structured grids using machine learning libraries,
CMAME 426:116974 10.1016/j.cma.2024.116974.

[5] Phillips et al. (2023) Solving the Discretised Neutron Diffusion Equations using Neural
Networks, IJNME, doi: 10.48550/arXiv.2301.09939.

[6] Phillips et al. (2023) Solving the Discretised Boltzmann Transport Equations using Neural
Networks: Applications in Neutron Transport, arXiv preprint, 10.48550/arXiv.2301.09991.

[7] Li et al. (2024) Implementing the Discontinuous-Galerkin Finite Element Method Using
Graph Neural Networks, SSRN preprint 10.2139/ssrn.4698813.

NFFDy Summer School 31 / 32

https://doi.org/10.1007/s42241-020-0050-0
https://doi.org/10.1016/j.cpc.2022.108292
https://doi.org/10.48550/arXiv.2402.17913
https://doi.org/10.1016/j.cma.2024.116974
https://doi.org/10.48550/arXiv.2301.09939
https://doi.org/10.48550/arXiv.2301.09991
https://dx.doi.org/10.2139/ssrn.4698813

Forward Modelling
Acknowledgements

Christopher Pain, Boyang Chen, and others in Department of Earth
Science and Engineering, and Imperial-X.

The AI4PDEs team at the Schmidt Sciences hackathon (Oxford, June
2024).

NFFDy Summer School 32 / 32

	anm1:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

