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• Hypersonic flows are relevant to a wide 
range of aerospace applications


• Multiple complex phenomena interacting

– Shock waves

– Separation

– Transition

– Chemistry 

Due to high-speeds reactions are in non-equilibrium

Motivation

2

Scanlon et al., AIAA journal 53(6) 2015

Flow

ESA.init

What  i s  the  impact  o f  chemis t ry  on  
the  f low dynamics?   
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Physicochemical modeling of hypersonic flow
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P h y s i c o c h e m i c a l  m o d e l i n g  a p p r o a c h e s  f o r  g a s e s 

• T h e r m a l l y  p e r f e c t  g a s  ( T P G )

Species diffusion

Reactions

+diffusive

R e a c t i v e  C o m p r e s s i b l e  N a v i e r- S t o k e s  

Inflow

!" = 10

• F i n i t e - r a t e  c h e m i s t r y  –  C h e m i c a l  n o n - e q u i l i b r i u m  
( C N E Q ) 


1. M i x t u r e  c o m p o s i t i o n :    f o r  5  
c o m p o n e n t s  a i r  m i x t u r e 


2. S p e c i e s  c o n s e r v a t i o n  e q u a t i o n s  

# = {$2, %2,  %$,  %,  $}
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T h e r m o d y n a m i c  –  t r a n s p o r t  –  k i n e t i c s  
n e e d  t o  b e  m o d e l l e d  a c c u r a t e l y 


 C o u p l i n g  o f  f l o w  s o l v e r  w i t h  
M u t a t i o n + +  l i b r a r y  [ 4 ]  

• L o c a l  i n p u t / o u t p u t  
r e l a t i o n s 


• U s e r  i n p u t s : 

– m i x t u r e  c o m p o n e n t s   

 
– T h e r m o d y n a m i c  m o d e l
# = {$2, %2,  %$,  %,  $}

 [&,  &',  &(]

[) , *,  + ,  ,,  h(,  -(,  .(]

Inflow

!" = 10

[4] - Scoggins, J. B., Leroy, V., Bellas-Chatzigeorgis, G., Dias, B., & Magin, T. E. (2020). Mutation++: Multicomponent thermodynamic and transport properties for ionized gases in C++. SoftwareX, 12, 100575.
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!∞ = 5

Influence of f inite-rate chemistry

• 2 D  p re l i m i n a r y  s e t u p   
S o n i c  t r a n s v e r s e  j e t  ( )  i n  c r o s s f l o w :  

– H o t  :    
– C o l d  :   

/  = 0.4 !∞  = 0∞
1∞

= 5 

 *∞ = 9472
*∞ = 62.52

T h i c k e r  C o l d  B L

2 5 0 K  d i f f e r e n c e  a t  t h e  
w a l l  w i t h  r e a c t i o n s  o n

*∞  = 62.52

T h i c k e r  C o l d  B L   
H i g h e r  p e n e t r a t i o n  o f  j e t

3 ($ ) =
&$
&

E n d o t h e r m i c  d i s s o c i a t i o n  
 w e a k e r  i n t e r a c t i o n

5Jet

• Chemical non-equilibrium in hypersonic 
flows  

– Order-one influence on quantities of interests 
(stability, heating, transition) [1,2,3] 


– Limited experimental/numerical data
[1] - Candler, G. V. (2019). Annual Review of Fluid Mechanics, 51, 379-402.

[2] – Di Renzo, M., & Urzay, J. (2021). JFM, 912.

[3] – Marxen, O., Iaccarino, G., & Magin, T. E. (2014). JFM, 755, 35-49.



30/03/23 |  Leeds -  ML |  Ta raneh Sayad i

Effects on the dynamics - 3D
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• Gr id 
 + units N

X 14 2132

Y 1 697

Z 14 1024

Total - 1.5 x 109 Numerical Schlieren

Experimental Schlieren

[4]

∇&

[4] – Erdem, Erinc. (2011). ACTIVE FLOW CONTROL STUDIES AT MACH 5: MEASUREMENT AND COMPUTATION. Manchester 
EScholar - The University of Manchester. The University of Manchester, 2011. 
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Challenge using thermochemical models ?
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C a n  w e  e x t r a c t  a  re d u c e d - o rd e r  
t h e r m o c h e m i c a l  m o d e l  t o  re d u c e  

C P U  c o s t  ?
0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

With library in place

Base

line

T i m e  p e r  i t e ra t i o n  

CNEQ  

TPG 

 [&,  &',  &(]

[) , *,  + ,  ,,  h(,  -(,  .(]

8M CPU hours
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Data-driven science  
(ML-driven algorithms, AI)
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Governing 
equations 

Introduction to modeling reacting hypersonic flow
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Incorporating (some) real-gas effects in the governing equations for high-speed flows

EFMC14, Athens, Greece   |   Friday, 16/09/2022   |   Athanasios (Thanos) Margaritis   |   a.margaritis@imperial.ac.uk

dρs

dt
+ ∇ ⋅ (ρsu) + ∇ ⋅ (ρsVs) = ·ωs , ∀ s

dρ
dt

+ ∇ ⋅ (ρu) = 0

dρu
dt

+ ∇ ⋅ (ρu ⊗ u) = − ∇p + ∇ ⋅ τ

dρe0
dt

+ ∇ ⋅ (ρh0u) = ∇ ⋅ (τ ⋅ u) − ∇ ⋅ qheat

Thermodynamics — transport — kinetics

Modifications due to finite-rate chemistry 
‣ Species conservation equations added 
‣ Thermodynamic and transport properties modified 
‣ State equation, viscosity, conductivity, …

Diffusion
Reactions

Incl. diffusive

& state equations and properties

Various approaches for physicochemical modeling of gases 
‣ Callorically/thermally perfect gas (CPG/TPG) 
‣ Local thermodynamic equilibrium (LTE) 
‣ Frozen chemistry and constant composition 
‣ Finite-rate chemistry and chemical non-equilibrium (CNEQ) 
‣ Multi-temperature and state-to-state models

Models Turbulence  
Chemistry

Post-
analysis

Extracting dynamics
Reduced-order Models 

Control
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V. Experimental Results and Comparison with CFD 
A. PLIF Flow Visualization 

Figures 4 and 5 show a summary of the NO PLIF flow visualization data set obtained in the wind tunnel tests.  They 
compare pitch, roll and yaw jet flows for low tunnel stagnation pressure (Fig. 4) and high tunnel stagnation pressure 
(Fig. 5) cases.  While these results are qualitatively similar to those described in detail in Ref. 11, these images were 
obtained with a slightly different Orion model configuration in a different test entry.  (In the current paper, the Orion 
configuration is 606D and the test number was Test 455).  The main focus of this paper is the comparison between the 
CFD computations and the fluorescence imaging and velocimetry for the yaw jet case.  The experimental results in Figs. 
4 and 5 will therefore only be briefly described. 

 

(a1)  (b1)  

(a2)  (b2)  

(a3)  (b3)  

Figure 4. Isometric views of experimental PLIF volumetric flow visualizations with P0 = 350 psi. Column (a) has 
Pc ~ 45 psi. Column (b) has Pc ~ 132 psi. Figures (a1) and (b1) show the pitch jet; (a2) and (b2) show the roll jet; 
(a3) and (b3) show the yaw jet (note model rotation 90° about the sting in the third row relative to the first two 
rows).  

 
 

Ivey et al. 2011

ESA.init
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Data-driven discovery of partial differential equations
Samuel H. Rudy,1* Steven L. Brunton,2 Joshua L. Proctor,3 J. Nathan Kutz1

We propose a sparse regression method capable of discovering the governing partial differential equation(s) of
a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-
promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most
accurately represent the data, bypassing a combinatorially large search through all possible candidate models.
The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto
analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spa-
tially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally
efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific
domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the
method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time
series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear
wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new tech-
nique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where
first-principles derivations are intractable.

INTRODUCTION
Data-driven discovery methods, which have been enabled in the
past decade by the plummeting cost of sensors, data storage, and com-
putational resources, have a transformative impact on the sciences, fa-
cilitating a variety of innovations for characterizing high-dimensional
data generated from experiments. Less well understood is how to un-
cover underlying physical laws and/or governing equations from time
series data that exhibit spatiotemporal activity. Traditional theoretical
methods for deriving the underlying partial differential equations
(PDEs) are rooted in conservation laws, physical principles, and/or
phenomenological behaviors. These first-principles derivations lead
to many of the canonical models ubiquitous in physics, engineering,
and the biological sciences. However, there remain many complex sys-
tems that have eluded quantitative analytic descriptions or even charac-
terization of a suitable choice of variables (for example, neuroscience,
power grids, epidemiology, finance, and ecology). We propose an alter-
native method to derive governing equations based solely on time series
data collected at a fixed number of spatial locations. Using innovations
in sparse regression, we discover the terms of the governing PDE that
most accurately represent the data from a large library of potential can-
didate functions. Measurements can be made in an Eulerian framework,
where the sensors are fixed spatially, or in a Lagrangian framework,
where the sensors move with the dynamics. We demonstrate the success
of the method by rediscovering a broad range of physical laws solely
from time series data.

Methods for data-driven discovery of dynamical systems (1) in-
clude equation-free modeling (2), artificial neural networks (3), non-
linear regression (4), empirical dynamic modeling (5, 6), normal form
identification (7), nonlinear Laplacian spectral analysis (8), modeling
emergent behavior (9), and automated inference of dynamics (10–12).
In this series of developments, seminal contributions leveraging sym-
bolic regression and an evolutionary algorithm (13, 14) were capable
of directly determining nonlinear dynamical system from data. More

recently, sparsity (15) has been used to robustly determine, in a highly
efficient computational manner, the governing dynamical system
(16, 17). Both the evolutionary (14) and sparse (16) symbolic regres-
sion methods avoid overfitting by selecting parsimonious models that
balance model accuracy with complexity via Pareto analysis. The
method we present is able to select, from a large library, the correct
linear, nonlinear, and spatial derivative terms, resulting in the identi-
fication of PDEs from data. Only those terms that are most informa-
tive about the dynamics are selected as part of the discovered PDE.
The innovation presented here is critically important because it effi-
ciently handles spatiotemporal data, which is a fundamental charac-
teristic of many canonical models. Previous sparsity-promoting methods
are able to identify ordinary differential equations (ODEs) from data
but are not able to handle spatiotemporal data or high-dimensional
measurements (16). Our novel methodology has several advantageous
practical characteristics: Measurements can be collected in either a
fixed or moving frame (Eulerian or Lagrangian), allowing for a broad
application to a variety of experimental data; the algorithm can also
efficiently handle high-dimensional data through innovative sampling
strategies. The algorithm, PDE functional identification of nonlinear dy-
namics (PDE-FIND), is applied to a wide range of canonical models.

RESULTS
We consider a parameterized and nonlinear PDE of the general form

ut ¼ Nðu; ux; uxx;⋯; x; mÞ ð1Þ

where the subscripts denote partial differentiation in either time or
space, and N(∙) is an unknown right-hand side that is generally a non-
linear function of u(x, t), its derivatives, and parameters in m. Our ob-
jective is to construct N(∙) given time series measurements of the
system at a fixed number of spatial locations in x. A key assumption
is that the function N(∙) consists of only a few terms, making the func-
tional form sparse relative to the large space of possible contributing
terms. As an example, Burgers’ equation (N = −uux + muxx) and the
harmonic oscillator ðN ¼ $imx2 $ iℏuxx=2Þ each have two terms.

1Department of Applied Mathematics, University of Washington, Seattle, WA 98195,
USA. 2Department of Mechanical Engineering, University of Washington, Seattle, WA
98195, USA. 3Institute for Disease Modeling, 3150 139th Avenue Southeast, Bellevue,
WA 98005, USA.
*Corresponding author. Email: shrudy@uw.edu
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Thus, given the large collection of candidate terms for constructing
PDEs, we use sparse regression methodologies to determine which
right-hand-side terms are contributing to the dynamics without an in-
tractable (np-hard) combinatorial brute-force search across all possible
term combinations.

Upon discretization, the right hand side of Eq. 1 can be expressed
as a function of U, which is the discrete version of u(x, t) and its de-
rivatives, through the matrix Q(U, Q), where the column vector Q
contains any additional input terms to the right hand side. Each col-
umn of the library Q(U, Q) corresponds to a specific candidate term
for the governing equation, as shown in Fig. 1 (1b). The PDE evolu-
tion can be expressed in this library as follows

Ut ¼ QðU; QÞx ð2Þ

Each nonzero entry in x corresponds to a term in the PDE, and for
canonical PDEs, the vector x is sparse, meaning that only a few
terms are active. We explicitly show in Materials and Methods how
to construct Q(U, Q) and solve for the vector x, thus identifying the
terms in the PDE.

Discovering the Navier-Stokes equations
Figure 1 demonstrates the algorithmic procedure for successfully
identifying the correct PDE dynamics for a given set of measurements
from a physical system. Specifically, fluid flow around a cylinder is
simulated at a given Reynolds, and measurements of the vorticity
and velocity can be densely or sparsely sampled to correctly recon-
struct the well-known Navier-Stokes equations. Remarkably, the coef-
ficients of the PDE and Reynolds number are identified within a

fraction of a percent accuracy. This figure represents our innovative
mathematical structure that combines sparse regression, a library of
potential functional forms, and parsimonious model selection.

Figure 1 also demonstrates that, for large data sets, such as those
generated from two- and three-dimensional problems, PDE-FIND
can be effectively used on subsampled data. This distinction is funda-
mentally important because full-state measurements are often compu-
tationally and experimentally prohibitive to collect and may also make
the regression needlessly expensive. We randomly select a set of spatial
points and uniformly subsample in time, resulting in the use of only a
fraction of the data set. Mathematically, this amounts to ignoring a
fraction of the rows in the linear system Ut = Q(U, Q)x, as illustrated
in Fig. 1 (2a and 2b). Although we only use a small fraction of the
spatial points in the linear system, nearby points are needed to eval-
uate the derivative terms in the library. The derivatives are computed
using a small number of spatially localized points near each mea-
surement position via polynomial interpolation. Therefore, whereas
subsampling uses only a small fraction of the points in the regression,
we are using local information around each measurement.

Previous sparse identification algorithms (16) faced a number of
challenges: They were not able to handle subsampled spatial data,
and the algorithm did not scale well to high-dimensional measure-
ments. Standard model reduction techniques such as proper orthogonal
decomposition (POD) were used to overcome the high-dimensional
measurements, allowing for a lower-order ODE model to be con-
structed on energetic POD modes. This procedure resembles the
standard Galerkin projection onto POD modes (18). In contrast, the
PDE-FIND algorithm identifies a PDE directly from subsampled mea-
surement data.

t

!
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ω
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ω ω
x1 u v ω
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x
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arg min
ξ

‖Θξ ξ− ωt‖2
2 + λ‖ ‖0

CΘξ − Cωt‖2
2 + λ‖ξ‖0

-

ξ
arg min‖

Fig. 1. Steps in the PDE functional identification of nonlinear dynamics (PDE-FIND) algorithm, applied to infer the Navier-Stokes equations from data. (1a)
Data are collected as snapshots of a solution to a PDE. (1b) Numerical derivatives are taken, and data are compiled into a large matrix Q, incorporating candidate terms
for the PDE. (1c) Sparse regressions are used to identify active terms in the PDE. (2a) For large data sets, sparse sampling may be used to reduce the size of the problem.
(2b) Subsampling the data set is equivalent to taking a subset of rows from the linear system in Eq. 2. (2c) An identical sparse regression problem is formed but with
fewer rows. (d) Active terms in x are synthesized into a PDE.
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We introduce physics-informed neural networks – neural networks that are trained to solve 
supervised learning tasks while respecting any given laws of physics described by general 
nonlinear partial differential equations. In this work, we present our developments in the 
context of solving two main classes of problems: data-driven solution and data-driven 
discovery of partial differential equations. Depending on the nature and arrangement of 
the available data, we devise two distinct types of algorithms, namely continuous time 
and discrete time models. The first type of models forms a new family of data-efficient
spatio-temporal function approximators, while the latter type allows the use of arbitrarily 
accurate implicit Runge–Kutta time stepping schemes with unlimited number of stages. The 
effectiveness of the proposed framework is demonstrated through a collection of classical 
problems in fluids, quantum mechanics, reaction–diffusion systems, and the propagation of 
nonlinear shallow-water waves.

 2018 Elsevier Inc. All rights reserved.

1. Introduction

With the explosive growth of available data and computing resources, recent advances in machine learning and data 
analytics have yielded transformative results across diverse scientific disciplines, including image recognition [1], cognitive 
science [2], and genomics [3]. However, more often than not, in the course of analyzing complex physical, biological or 
engineering systems, the cost of data acquisition is prohibitive, and we are inevitably faced with the challenge of drawing 
conclusions and making decisions under partial information. In this small data regime, the vast majority of state-of-the-art 
machine learning techniques (e.g., deep/convolutional/recurrent neural networks) are lacking robustness and fail to provide 
any guarantees of convergence.

At first sight, the task of training a deep learning algorithm to accurately identify a nonlinear map from a few – poten-
tially very high-dimensional – input and output data pairs seems at best naive. Coming to our rescue, for many cases 
pertaining to the modeling of physical and biological systems, there exists a vast amount of prior knowledge that is 
currently not being utilized in modern machine learning practice. Let it be the principled physical laws that govern the 
time-dependent dynamics of a system, or some empirically validated rules or other domain expertise, this prior information 
can act as a regularization agent that constrains the space of admissible solutions to a manageable size (e.g., in incompress-

* Corresponding author.
E-mail address: pgp@seas.upenn.edu (P. Perdikaris).

https://doi.org/10.1016/j.jcp.2018.10.045
0021-9991/ 2018 Elsevier Inc. All rights reserved.
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Fig. A.6. Burgers’ equation: Top: Predicted solution u(t, x) along with the initial and boundary training data. In addition we are using 10,000 collocation 
points generated using a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact solutions corresponding to the three temporal 
snapshots depicted by the white vertical lines in the top panel. The relative L2 error for this case is 6.7 ·10−4. Model training took approximately 60 seconds 
on a single NVIDIA Titan X GPU card.

In all benchmarks considered in this work, the total number of training data Nu is relatively small (a few hundred up 
to a few thousand points), and we chose to optimize all loss functions using L-BFGS a quasi-Newton, full-batch gradient-
based optimization algorithm [35]. For larger data-sets a more computationally efficient mini-batch setting can be readily 
employed using stochastic gradient descent and its modern variants [36,37]. Despite the fact that there is no theoretical 
guarantee that this procedure converges to a global minimum, our empirical evidence indicates that, if the given partial 
differential equation is well-posed and its solution is unique, our method is capable of achieving good prediction accuracy 
given a sufficiently expressive neural network architecture and a sufficient number of collocation points N f . This general ob-
servation deeply relates to the resulting optimization landscape induced by the mean square error loss of equation (4), and 
defines an open question for research that is in sync with recent theoretical developments in deep learning [38,39]. Here, 
we will test the robustness of the proposed methodology using a series of systematic sensitivity studies that accompany the 
numerical results presented in the following.

Fig. A.6 summarizes our results for the data-driven solution of the Burgers equation. Specifically, given a set of Nu = 100
randomly distributed initial and boundary data, we learn the latent solution u(t, x) by training all 3021 parameters of a 
9-layer deep neural network using the mean squared error loss of (A.2). Each hidden layer contained 20 neurons and a 
hyperbolic tangent activation function. The top panel of Fig. A.6 shows the predicted spatio-temporal solution u(t, x), along 
with the locations of the initial and boundary training data. We must underline that, unlike any classical numerical method 
for solving partial differential equations, this prediction is obtained without any sort of discretization of the spatio-temporal 
domain. The exact solution for this problem is analytically available [13], and the resulting prediction error is measured 
at 6.7 · 10−4 in the relative L2-norm. Note that this error is about two orders of magnitude lower than the one reported 
in our previous work on data-driven solution of partial differential equation using Gaussian processes [8]. A more detailed 
assessment of the predicted solution is presented in the bottom panel of Fig. A.6. In particular, we present a comparison be-
tween the exact and the predicted solutions at different time instants t = 0.25, 0.50, 0.75. Using only a handful of initial and 
boundary data, the physics-informed neural network can accurately capture the intricate nonlinear behavior of the Burgers’ 
equation that leads to the development of a sharp internal layer around t = 0.4. The latter is notoriously hard to accurately 
resolve with classical numerical methods and requires a laborious spatio-temporal discretization of equation (A.1).

To further analyze the performance of our method, we have performed the following systematic studies to quantify its 
predictive accuracy for different number of training and collocation points, as well as for different neural network archi-
tectures. In Table A.1 we report the resulting relative L2 error for different number of initial and boundary training data 
Nu and different number of collocation points N f , while keeping the 9-layer network architecture fixed. The general trend 
shows increased prediction accuracy as the total number of training data Nu is increased, given a sufficient number of col-
location points N f . This observation highlights a key strength of physics-informed neural networks: by encoding the structure 
of the underlying physical law through the collocation points N f , one can obtain a more accurate and data-efficient learning 

Bottleneck: large amount of data required to train the 
models for multi-scale multi-physics problems!
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Abstract

Data from experiments and direct simulations of turbulence have his-

torically been used to calibrate simple engineering models such as those

based on the Reynolds-averaged Navier–Stokes (RANS) equations. In

the past few years, with the availability of large and diverse datasets,

researchers have begun to explore methods to systematically inform

turbulence models with data, with the goal of quantifying and reduc-

ing model uncertainties. This review surveys recent developments in

bounding uncertainties in RANS models via physical constraints, in

adopting statistical inference to characterize model coe�cients and esti-

mate discrepancy, and in using machine learning to improve turbulence

models. Key principles, achievements and challenges are discussed. A

central perspective advocated in this review is that by exploiting foun-

dational knowledge in turbulence modeling and physical constraints,

data-driven approaches can yield useful predictive models.
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local flow variables. While this is an activity at the L3 level (specific to a baseline model),

the methodology is generally applicable to any turbulence model. In contrast, Wang et al.

(2017) and Wu et al. (2018b) developed a more comprehensive perturbation strategy to

predict discrepancies in the magnitude, anisotropy, and orientation of the Reynolds stress

tensor. They demonstrated results for two sets of canonical flows, separated flows over

periodic hills and secondary flows in a square duct. Representative results are presented

in Figures 6 and 7, showing improved predictions of Reynolds stress anisotropy and mean

velocities, respectively.

Figure 6: Anisotropy at locations (indicted in the insets) in the flow over periodic hills,

predicted by using a random forest model trained on several separated flows in significant

di↵erent geometries and configurations (Wang et al. 2017).

training

test 0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

RANS DNS MLPeriodic hill geometry

Figure 7: Velocities predicted by using machine-learning corrected Reynolds stresses. The

training data is obtained from a flow over periodic hills in a slightly di↵erent geometry as

shown on the left panel (Wu et al. 2018b).

An important aspect of applying machine learning techniques is to ensure the objec-

tivity and the rotational invariance of the learned Reynolds stress models. Tracey et al.

(2013),Wang et al. (2017), and Wu et al. (2018b) used tensor invariants based on the eigen-

decomposition of the Reynolds stresses, while for the representation of the stress orientation,

both Euler angles and unit quaternions have been considered (Wu et al. 2017).

As discussed earlier a strategy to develop closures for Reynolds stresses is based on the

formulation of a generalized expansion of the Reynolds stress tensor (Pope 1975). In the
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Abstract
A novel deterministic symbolic regression method SpaRTA (Sparse Regression of Turbulent
Stress Anisotropy) is introduced to infer algebraic stress models for the closure of RANS
equations directly from high-fidelity LES or DNS data. The models are written as ten-
sor polynomials and are built from a library of candidate functions. The machine-learning
method is based on elastic net regularisation which promotes sparsity of the inferred mod-
els. By being data-driven the method relaxes assumptions commonly made in the process of
model development. Model-discovery and cross-validation is performed for three cases of
separating flows, i.e. periodic hills (Re=10595), converging-diverging channel (Re=12600)
and curved backward-facing step (Re=13700). The predictions of the discovered models
are significantly improved over the k-ω SST also for a true prediction of the flow over peri-
odic hills at Re=37000. This study shows a systematic assessment of SpaRTA for rapid
machine-learning of robust corrections for standard RANS turbulence models.

Keywords Turbulence modelling · Machine learning · Sparse symbolic regression ·
Explicit Algebraic Reynolds-stress models · Data-driven

1 Introduction

The capability of Computational Fluid Dynamics (CFD) to deliver reliable prediction is
limited by the unsolved closure problem of turbulence modelling. The workhorse for tur-
bulence modelling in industry are the Reynolds-Averaged Navier-Stokes (RANS) equations
using linear eddy viscosity models (LEVM) [1]. The lower computational costs compared to
high-fidelity approaches, e.g. Large-Eddy (LES) or Direct Numerical Simulations (DNS),

! Martin Schmelzer
m.schmelzer@tudelft.nl

1 Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 2,
Delft, The Netherlands

2 Laboratoire DynFluid, Arts et Métiers ParisTech, 151 Boulevard de l’Hopital, 75013 Paris, France
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/ Published online: 201917 December

Fig. 13 Predicted stream-wise velocity for flow over periodic hills at Re = 37000 using correction models
compared to baseline k-ω SST and experimental data of [44]

Fig. 11. The enhanced production Pk due to a positively-signed R induces an increase of
eddy viscosity, which makes the corrected model more dissipative compared to the baseline
k-ω SST model. This is shown in Fig. 12 for the periodic hills at stream-wise position x =
4.0. The result is an increase of shear-stress, which leads to shortening of the recirculation
bubble [47]. Consequently, the increase of eddy viscosity follows the magnitude of the
coefficients of the models, i.e.M(1) < M(3) < M(2).

In order to test how the models extrapolate to cases of larger Re, we predict the flow over
periodic hills at Re = 37000, see Fig. 13. Due to an increase of turbulence this case has a
significantly shorter recirculation zone. For this true prediction throughout the domain the
three models improve significantly compared to the baseline. Interestingly, the modelsM(2)

and M(3) are providing a better fit of the data than M(1), which was performing better on
the lower Re case. Also for this case, the eddy viscosity is significantly larger compared to
the baseline model, see Fig. 12, inducing the same pattern as discussed above for PH10595.

6 Conclusion and Extension

In this work SpaRTA was introduced to discover algebraic models in order to correct the
model-form error within the k-ω SST. For this novel machine learning method two additive
terms, on the level of the stress-strain relation b∆

ij and within the turbulent transport equa-
tions R, were identified by means of k-corrective-frozen-RANS, for which the governing
equations are evaluated given high-fidelity data of three cases of separating flows. It was
validated that the computed terms are compensating the model-form error and reproduce
the high-fidelity LES or DNS mean-flow data. Hence, k-corrective-frozen-RANS is a cost-
efficient way to distill useful information directly from full-field data without the need of
an inversion procedure.

Cross-validation of the discovered models using CFD was carried out to rank the models.
While using both corrections for R as well es for b∆

ij leads to an improvement of the pre-
dictions over the baseline, a correction only for R is already enough to achieve sufficient
results for the velocity field. This also shows the potential for a multi-objective optimisation
approach aiming to find models, which are correcting R and b∆

ij together instead of sepa-
rately. For the best performing models on each case both the global error on U as well as

Flow, Turbulence and Combustion (2020) 104:579–603600
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a b s t r a c t 
A chemistry reduction approach based on machine learning is proposed and applied to direct numeri- 
cal simulation (DNS) of a turbulent non-premixed syngas oxy-flame interacting with a cooled wall. The 
training and the subsequent application of artificial neural networks (ANNs) rely on the processing of 
‘thermochemical vectors’ composed of species mass fractions and temperature (ANN input), to predict the 
corresponding chemical sources (ANN output). The training of the ANN is performed aside from any flow 
simulation, using a turbulent non-adiabatic non-premixed micro-mixing based canonical problem with a 
reference detailed chemistry. Heat-loss effects are thus included in the ANN training. The performance of 
the ANN chemistry is then tested a-posteriori in a two-dimensional DNS against the detailed mechanism 
and a reduced mechanism specifically developed for the operating conditions considered. Then, three- 
dimensional DNS are performed either with the ANN or the reduced chemistry for additional a-posteriori 
tests. The ANN reduced chemistry achieves good agreement with the Arrhenius-based detailed and re- 
duced mechanisms, while being in terms of CPU cost 25 times faster than the detailed mechanism and 
3 times faster than the reduced mechanism when coupled with DNS. The major potential of the method 
lies both in its data driven character and in the handling of the stiff chemical sources. The former allows 
for easy implementation in the context of automated generation of case-specific reduced chemistry. The 
latter avoids the Arrhenius rates calculation and also the direct integration of stiff chemistry, both leading 
to a significant CPU time reduction. 

© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 
Accounting for the complexity of chemistry in numerical sim- 

ulation of flames has been the subject of numerous studies since 
the 80’s. Reduced and skeleton mechanisms were first discussed 
from the fundamentals of combustion chemistry, sometimes cou- 
pled with more or less advanced sensitivity analyses (see [1–5] and 
references therein). Meanwhile, the progress in the understanding 
of chemistry and transport phenomena has driven the develop- 
ment of detailed and reliable chemistry mechanisms for fuel ox- 
idation, which could now contain up to hundreds of species and 
thousands of reactions [6] . To avoid dealing with too many degrees 
of freedom, which would need to be solved together with the flow 
dynamics, these chemical mechanisms are usually downsized be- 
fore their introduction in computational fluid dynamics software. 

∗ Corresponding author. 
E-mail address: vervisch@coria.fr (L. Vervisch). 

Thereby, more or less automated reduction techniques of these ref- 
erence detailed chemical mechanisms have been discussed in the 
literature. These reduction approaches may combine fuel lumping, 
time-scale and principal component analysis or a direct numerical 
treatment of the chemical signals from graph analysis or genetic 
algorithms, approaches which may also be associated with system- 
atic tabulation techniques [7–23] (not exhaustive list). 

Considering a detailed chemical mechanism involving a num- 
ber N S of species interacting according to N R elementary reactions, 
the reduction procedure consists of expressing the chemical rates 
of a number N r S < N S of species, so that the thermochemical infor- 
mation relevant for the problem under consideration is preserved. 
Robust and well-established methods exist to rank species accord- 
ing to their relative importance in the prediction of thermochem- 
ical properties, which should be accurately captured by the re- 
duced scheme [11,15,16,20] . This allows for determining the min- 
imum set of N r S species to be transported with the flow to pre- 
serve a given level of accuracy. Once this first step completed, in 
a second step, the burning rates are usually expressed from a re- 

https://doi.org/10.1016/j.combustflame.2020.06.008 
0010-2180/© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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Fig. 3. Sketch of the ANN training process from the micro-mixing database. (For 
interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.) 
(close to the shortest chemical time scale observed for the in- 
termediate species retained in the mechanism). Organizing the 
sources in this form is convenient for the subsequent coupling 
with flow simulation following two options: in the case where 
a specific time integration method for stiff differential systems is 
preferred, the source can be used directly. If sub-iterations take 
place with the time step δt > δt o , interpolations will be needed 
to estimate ˙ ω i (t) . A second option for the coupling with the flow, 
is to directly read from the ANNs φi (t + δt) . Here again, if δt > δt o , 
sub-iterations will be required to secure accuracy. The second op- 
tion is used thereafter and since δt = δt o in our flow simulation, 
sub-iterations are not performed. 

The chemical sources of the reduced set of N r S = 11 species 
(source of N 2 is set to zero) are computed from the detailed 
chemical scheme with the N S = 35 species. Therefore these sources 
do not preserve the atomic budgets computed over the N r S < N S 
species. Even if at its maximum, the mass default is only 0.016% 
of the total mass of these atoms, in order to fully conserve mass, 
corrective sources are added according to the relative contribution 
of the species to atomic budgets. Let us denote αA,i the number of 
atom A (i.e., A ≡ C, H or O) in the i th species. The mass imbalance 
in A source reads for the reduced set of species 
% ˙ ω A = N r s ∑ 

i =1 
αA ,i W A 

W i ˙ ω i , (7) 
where W A and W i are molar weights. Sources of carbon contain- 
ing species of the syngas (CO and CO 2 ) and hydrogen containing 
species (H 2 , H, H 2 O, OH, HO 2 and H 2 O 2 ) are corrected adding 
% ˙ w i = − Y i 

Y A % ˙ ω A , (8) 
with the atom mass fraction Y A = ∑ N r s 

i =1 αA ,i (W A /W i ) Y i . For oxygen, 
Eq. (8) is applied only to O 2 and with the already corrected sources 
of C and H containing species. This correction is applied during the 
ANN-DNS coupled simulations (therefore after ANN training). Then, 
the chemical sources perfectly preserve atomic budgets, as chem- 
ical sources computed from elementary reactions with Arrhenius 
laws would. In practice this correction stays marginal, a source 
correction ( Eq. (8) ) significantly contributing to the burning rates 
would mean that too many species were removed, jeopardizing the 
quality of the ANN prediction. 

Within the information from the stochastic particles containing 
17.5 × 10 6 data, 3.5 × 10 6 (20%) of them are randomly selected 
to form the testing database, while the remaining 14 × 10 6 (80%) 
constitute the training database. All data contributing to the “in- 
put vectors” and to the “targets” are normalized by their respec- 
tive maximum absolute value over the entire database, and these 
maximum levels are stored. 

3.5. ANN structure 
The exact structure of the sequential ANNs 1 is summarized in 

Table 3 . Five fully connected dense layers are employed between 
the input and output layers. Each neuron of the dense layers 2 . (see 
green circles in Fig. 3 ) performs the following two operations: a 
weighted sum of inputs from all the neurons of the previous layer 
and the subsequent calculation of a non-linear activation function. 
In the present study, the popular rectified linear unit (ReLU) acti- 
vation function is used: 
ReLU (x ) = max (x, 0) . (9) 
Various options were attempted (even using a different network 
for each species and temperature). In the end, the above ANN 
topology, which is a quite standard one, including the number of 
layers and neurons per layer, appears as the simplest efficient net- 
work for the prediction of the chemical sources. More complex 
networks would slow down the training process, with an increased 
risk of overfitting. In total, the neural network contains 179,851 
weights to be adjusted. 

To improve the precision of the ANNs for small values of the 
chemical sources, a second network with the exact same structure 
is trained for a subset of the database defined by Y O 2 > 0 . 9 , i.e., 
where the overall burning rates stay very low. A sufficiently large 
number of data points are involved in the training so that continu- 
ity is secured between the two networks. The subset-database is 
normalized by its own maximum absolute values. In the following, 
the networks are referred to as the main ANN and the second ANN 
(subset for lower burning rates). 

The training of the ANNs is performed using the TensorFlow 
Python library with GPU support ( www.tensorflow.org ). The neu- 
ral weights are adjusted during the training process until a satis- 
fying minimal error is obtained between the “target” sources and 
the ones predicted by the ANNs. The Adam optimizer [59] is used 
with a mean-squared-error (MSE) loss function comparing the pre- 
dictions to the target. A training step is performed with a batch of 
10,240 “input vectors”, leading to 1369 steps per “epoch”/iteration 
for the main ANN. The learning rate [60] is initially set to 0.0 0 03, 
to decay versus the steps ( n ) according to 
l r = 0 . 0 0 03 

1 . 0 + 0 . 0 0 01 · n . (10) 
The network is trained for 500 epochs to reach convergence, which 
requires for the main ANN about 3.2 h on an Nvidia GeForce GTX 
1080 Ti GPU. 
3.6. ANN testing 

The performance of the ANNs is first evaluated a-priori on the 
testing database containing 3.5 × 10 6 data unseen during training. 
The mean-square error between the ANN predictions and the tar- 
gets is 9.2 ×10 −7 for the main ANN and 3.6 ×10 −7 for the second 
ANN. Fig. 4 shows the predicted chemical sources against their tar- 
get values for both the main ANN and the second ANN, confirming 
in a preliminary manner the accuracy of the ANN reduced chem- 
istry approach. 
4. ANN-DNS full coupling 

The ANN reduced chemistry is now coupled with the flow 
solver to simulate the syngas non-premixed oxy-flame (only CPU 

1 In a sequential ANN, each layer has exactly one input tensor and one output 
tensor. 

2 A dense layer is driven by the same formulas as the linear layers, but the end 
result is passed through a non-linear function called ‘Activation function’. 
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Fig. 9. Averaged distribution of wall heat flux at the upper wall. Mean ± RMS. 2D (a) Symbols: GRI-3.0. Solid line and orange: Reduced mechanism ( Table 2 ). Dashed line 
and green: ANN chemistry. 3D (b) Dash dotted line and blue: Reduced mechanism ( Table 2 ). Dotted line and red: ANN chemistry. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Averaged distribution of temperature predicted by ANN chemistry in 2D and 3D cases. The zoomed-in sub-figures show the thermal boundary layers near the upper 
wall. 

Fig. 11. Normalized average wall-clock-time per time step for solving reaction 
sources and the convective-diffusive part of the equations in 2D DNS coupled with 
GRI-3.0, 11-species reduced mechanism ( Table 2 ), and ANN. (Normalization by GRI- 
3.0.) 
perature distribution shown in Fig. 10 , as expected the thermal 
boundary layer in 2D case is much thinner than that in 3D case. 

The computational cost of the coupled ANN-DNS approach is 
given in Fig. 11 for the 2D simulations, which include all three 

approaches (detailed, reduced and ANN). For solving the chemical 
source part of the problem, simulations with ANN chemistry are 25 
times faster than those with the GRI-3.0 detailed mechanism, and 
3 times faster than the 11-species reduced mechanism. This speed- 
up results mainly from the fact that Arrhenius rates calculation are 
not needed and the time integration of stiff chemical sources is 
also avoided when the option of directly reading the species incre- 
ments from the ANN is chosen. The computational time for solv- 
ing the convective-diffusive part of the turbulent flame mainly de- 
pends on the number of species to be transported, it is therefore 
similar for the ANN-DNS and reduced chemistry DNS. (Same re- 
marks apply to the 3D-DNS.) 
5. Conclusions 

One of the major stumbling block to the systematic introduc- 
tion of artificial neural networks (ANNs) in flame simulation lies in 
the definition of generic training procedures, so that actually per- 
forming the simulation of the target flow geometry is not manda- 
tory to complete the training of the ANN. Canonical problems, as- 
sociated to given network architectures and training procedures, 
which could be applied prior to flame simulations, are likely to 
help popularizing the application of machine learning to computa- 
tional combustion. Indeed, aside from a few pioneer works [26,36] , 
in most of previously published applications, the training and the 
subsequent use of the neural networks have been demonstrated on 
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Data-driven framework for input/output lookup tables reduction - with application to
hypersonic flows in chemical non-equilibrium
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3DAAA, Onera, France
4Department of Mechanical Engineering, KAUST, SA
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Hypersonic flows are of great interest in a wide range of aerospace applications and are a critical
component of many technological advances. Accurate simulations of these flows in thermodynamic
(non)-equilibrium (accounting for high temperature effects) rely on detailed thermochemical gas
models. While accurately capturing the underlying aerothermochemistry, these models dramatically
increase the cost of such calculations. In this paper, we present a novel model-agnostic machine-
learning technique to extract a reduced thermochemical model of a gas mixture from a library.
A first simulation gathers all relevant thermodynamic states and the corresponding gas properties
via a given model. The states are embedded in a low-dimensional space and clustered to identify
regions with different levels of thermochemical (non)-equilibrium. Then, a surrogate surface from
the reduced cluster-space to the output space is generated using radial-basis-function networks.
The method is validated and benchmarked on a simulation of a hypersonic flat-plate boundary
layer with finite-rate chemistry. The gas properties of the reactive air mixture are initially modeled
using the open-source Mutation++ library [1]. Substituting Mutation++ with the light-weight,
machine-learned alternative improves the performance of the solver by 50% while maintaining overall
accuracy.

I. INTRODUCTION

Non-equilibrium effects have been shown to play an important role in the accurate simulation of flows at hypersonic
conditions and in the computation of design characteristics, such as transition location or thermal loading [2–5].
Recent studies have identified these effects as causes of order-one changes in growth rates, response behavior or
sensitivities, even though the corresponding variations in first-order flow statistics have been modest. These findings
have in turn prompted a significant endeavor of augmenting existing flow solvers with non-equilibrium modules to
account for finite-rate aerothermochemical features.
Simulations in this parameter regime introduce and track a range of species in their inert or ionized forms [6–8].
Complementing the hydrodynamic state vector by chemical components is a well-established technique, for example
in combustion or atmospheric simulations, but the required modeling of the inter-species interactions, such as disso-
ciation, reaction and recombination [9], for hypersonic applications poses great challenges.
Much of this modeling is accomplished by lookup libraries, which act as repositories of tabulated chemical reactions
encountered for a given flow state [1]. When passing state-vector components to the library, amplitudes and time-
scales for various forcing terms are returned, appearing as exogeneous inputs to the momentum, energy and species
transport equations.
Much effort has gone into these libraries, and for aerothermochemical non-equilibrium effects in hypersonic flows,
the Mutation++ library (MUlticomponent Thermodynamic And Transport properties for IONized gases in C++),
developed and maintained at the von Karman Institute (VKI), has become the standard for high-fidelity simulations
of high-speed and high-enthalpy flows [1]. This library can be coupled to existing flow solvers and is capable of mod-
eling a range of partially ionized gas effects, together with non-equilibrium features, energy exchange processes and
gas-surface interactions. The flexibility and scope of the library comes at the expense of a computational bottleneck
that slows down a typical large-scale simulation by a large factor, as shown in Fig. 1, where typical simulation times
for calorically and thermally perfect gases are juxtaposed with results for non-equilibrium chemical reactions. A
wide margin can be observed. For this reason, non-equilibrium computations range among the most inefficient and
laborious calculations in fundamental hypersonic research.

∗ Corresponding author: clement.scherding@dalembert.upmc.fr
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performance while maintaining a high level of accuracy.

C. Model stability

The resulting data-driven model (model 4, with all pre-processing steps) is coupled to the flow solver in a time-
marching simulation. Starting from the solution obtained with Mutation++, the simulation is restarted using the
reduced library only, also referred as a closed-loop prediction. After running for a couple of flow-through times, the
solution remains stable. The base-flow profiles are compared for various quantities of interest in Fig. 15. Excellent
agreement is found between the profiles. This validates the accuracy and suitability of the data-driven model to
simulate hypersonic flows in chemical non-equilibrium over the enthalpy range observed during the training step.

(a) (b) (c)

FIG. 15. Comparison of profiles of (a) streamwise velocity, (b) temperature, (c) species mass fractions from left to to right N ,
NO, O, O2 and N2 at Rex = 2000. Solid line and symbols correspond to the solution obtained using Mutation++ and the
data-driven model, respectively.

D. Model performance

To compare the performance of the data-driven model to the full library, we performed a scaling study. Mutation++
is a serial library, hence its time complexity can be expressed as O(CM++Nt) where Nt is the number of independent,
evaluated thermodynamic states. CM++ is empirically determined in Fig. 16. For the data-driven model, we recall
that its time complexity is O(CMLNt), where CML = O(HCacL+ ntreedepth+NRCRBF ).

Both curve fits, shown in Fig. 16, suggest that, in practice, both models scale as O(Nt) with exponents close to
unity. The ratio of the prefactor is CML/CM++ ≈ 0.52. We can therefore expect a 52% CPU gain by using the
data-driven model instead of Mutation++. In fact, we assessed a CPU time reduction of 50% during the simulation,
with a grid of size N ≈ 400, 000. This confirms a speedup through the use of a surrogate model. Moreover, fine
tuning of the hyperparameters may allow even higher CPU gains as CML is proportional to a linear combination of
the hyperparameters. Finally, we stress that the data-driven algorithm is an unoptimized python implementation
competing with a compiled C++ library. We thus expect even larger CPU gains in the future with an optimized
implementation and added adaptivity.

V. CONCLUSIONS

In this paper, we presented a novel technique to reduce any high-dimensional look-up library to a lower-dimensional
surrogate, and thus reduce the CPU costs of numerical simulations that rely on these libraries. Several machine learn-
ing techniques have been used: encoding based on deep neural networks, community clustering, surrogate modeling
and classification in a three-step learning phase. In the first step, the proposed input/output-encoder architecture has
been shown to outperform partial least-squares (PLS) for dimensionality reduction of input/output relations. Clus-
tering was performed using Newman’s algorithm. It discovered physically consistent clusters in the low-dimensional
latent space without a-priori knowledge of the number of clusters. Then, a random-forest classifier was trained,
which reliably predicted the cluster of previously unencountered data points. Finally, a radial basis function network
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Learning dominant physical processes with
data-driven balance models
Jared L. Callaham 1✉, James V. Koch2, Bingni W. Brunton 3, J. Nathan Kutz4 & Steven L. Brunton1

Throughout the history of science, physics-based modeling has relied on judiciously

approximating observed dynamics as a balance between a few dominant processes. How-

ever, this traditional approach is mathematically cumbersome and only applies in asymptotic

regimes where there is a strict separation of scales in the physics. Here, we automate and

generalize this approach to non-asymptotic regimes by introducing the idea of an equation

space, in which different local balances appear as distinct subspace clusters. Unsupervised

learning can then automatically identify regions where groups of terms may be neglected. We

show that our data-driven balance models successfully delineate dominant balance physics in

a much richer class of systems. In particular, this approach uncovers key mechanistic models

in turbulence, combustion, nonlinear optics, geophysical fluids, and neuroscience.
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corresponding to the viscous sublayer, inertial sublayer, and
slightly perturbed free stream. It also identifies a region near the
inlet characterized by a lack of Reynolds stresses, suggesting the
mean profile here should be consistent with the laminar solution,
as well as a transitional region between the laminar inflow region
and fully developed turbulence downstream.
Dominant balance analysis is a starting point for many of the

results of boundary layer theory, for instance, in making
experimentally observable predictions for the profiles and scaling
of wall turbulence26,27. Although we hope that data-driven
balance identification will open new avenues of analysis, we can
also use established results to examine the consistency of the
proposed method. For example, the dominant length scale ℓ in
the inertial sublayer is expected to depend on the streamwise
coordinate x via a power law ℓ ~ x4/5 25. It is not usually obvious
how to extract a specific value of ℓ for which this scaling can be
checked. However, as a rough proxy, we may consider the wall-
normal coordinate at which the dominant balance changes from
that of the inertial sublayer to the free stream. Figure 1 shows that
the growth of the inertial sublayer thickness according to this
definition closely agrees with the theoretical value.

Nonlinear optical pulse propagation. Another important
example of dominant balance arises in nonlinear optics, where
the interplay of an intensity-dependent index of refraction with
chromatic dispersion can generate localized optical solitons28.
Figure 3 shows an example of a process known as

supercontinuum generation, in which nonlinear processes act on
a localized pulse of light to broaden the optical spectrum,
stretching an initial 20–30 nm bandwidth to hundreds of nan-
ometers. This is typically accomplished in microstructured optical
fibers29. The governing equation in this case is derived from
Maxwell’s wave equation in one dimension through the rotating
wave and slowly varying envelope approximations30. The original
PDE is linear and second order in a vacuum, but in order to
handle complicated polarization responses in fibers the field is
expanded about the frequency of the original pulse4,31. This
center frequency expansion leads to a Taylor series expansion of
the linear polarization response, and the Raman convolution
integral describing a time-delayed nonlinear response. The
resulting PDE, known as a generalized nonlinear Schrödinger
equation (GNLSE), describes the evolution of the slowly varying
complex envelope u(x,t) of the pulse. When nondimensionalized
with soliton scalings31, the envelope equation is

∂u
∂x
!
X1

k¼2
αk

∂ku
∂tk
¼ i! ∂

∂t

! "
u
Z 1

!1
rðt0Þjuðt0Þj2dt0 ð2aÞ

rðtÞ ¼ aδðtÞ þ b expðctÞ sinðdtÞΘðtÞ: ð2bÞ

The various constants (αk, a, b, c, d) describe the polarization
response and are determined empirically.

Although the spectral domain is often of practical interest for
studies of supercontinuum generation, in the time domain the
pulse exhibits soliton behavior, as shown in Fig. 3. To leading

Fig. 2 Dominant balance physics identified across a range of systems. For each case, a visualization of the system is shown on the left, followed by 2D
views of the equation space colored by the identified balance relation, a key describing the active terms in each model, and the original field colored by the
local balance. From top: a boundary layer in transition to turbulence, pulse propagation in an optical fiber, surface currents in the Gulf of Mexico, a
Hodgkin–Huxley model for an intrinsically bursting neuron, and a simplified combustion model for a rotating detonation engine.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21331-z

4 NATURE COMMUNICATIONS | ��������(2021)�12:1016� | https://doi.org/10.1038/s41467-021-21331-z | www.nature.com/naturecommunications

Theor. Comput. Fluid Dyn. (2020) 34:333–337
https://doi.org/10.1007/s00162-020-00542-y

EDITORIAL

Steven L. Brunton · Maziar S. Hemati · Kunihiko Taira

Special issue on machine learning and data-driven methods
in fluid dynamics

Received: 17 June 2020 / Accepted: 23 June 2020 / Published online: 5 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Machine learning (i.e., modern data-driven optimization and applied regression) is a rapidly growing field of
research that is having a profound impact across many fields of science and engineering. In the past decade,
machine learning has become a critical complement to existing experimental, computational, and theoretical
aspects of fluid dynamics. In this short article, we are excited to introduce this special issue highlighting a
number of promising avenues of ongoing research to integrate machine learning and data-driven techniques in
the field of fluid dynamics. We will also attempt to provide a broader perspective, outlining recent successes,
opportunities, and open challenges, while balancing optimism and skepticism.

In the field of fluid dynamics, there is an interesting parallel between the rise of machine learning in recent
years and the rise of computational science decades earlier. Neither approach fundamentally changes the sci-
entific questions being asked nor the higher-level objectives. Rather, both approaches provide sophisticated
tools for analysis based on emerging technologies, enabling the community to address scientific questions at a
greater scale and a broader scope thanwas previously possible. In the early years of computational fluid dynam-
ics, there were voices of both extreme skepticism and open-ended optimism that these new approaches would
supplant existing techniques. In reality, computational techniques have provided another valuable perspective
for scientific inquiry, complementing more traditional approaches. It is therefore reasonable to believe that
machine learning and data-intensive analysis will have a similar impact, complementing other well-established
techniques to expand our collective capabilities.

Machine learning offers a wealth of techniques to discover patterns in high-dimensional data [5,6], extend-
ing traditional modal expansions that have been a cornerstone of fluid dynamics for decades [26,27]. Despite
this great potential, it is important to recognize that these algorithmsmust be used properly, and that a single tool
alone will not be equipped to address every task. The same factors that make data-driven and machine learning
methods so appealing—namely, that they are relatively easy to use and do not require expert knowledge—can
also serve as a potential downfall. Much as users of CFD software are cautioned against blind application of
these numerical tools without proper knowledge, training, and verification/validation, we must adopt a similar
philosophy for the use of data-driven and machine learning tools.
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S. L. Brunton (B)
Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
E-mail: sbrunton@uw.edu

M. S. Hemati
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
E-mail: mhemati@umn.edu

K. Taira
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
E-mail: ktaira@seas.ucla.edu

Enhancing Computational Fluid Dynamics

with Machine Learning

Ricardo Vinuesa1,2⇤ and Steven L. Brunton3

1 FLOW, Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
2 Swedish e-Science Research Centre (SeRC), Stockholm, Sweden

3 Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, United States
⇤ Corresponding author: Ricardo Vinuesa (rvinuesa@mech.kth.se)

Abstract

Machine learning is rapidly becoming a core technology for scientific computing, with numerous opportunities
to advance the field of computational fluid dynamics. In this Perspective, we highlight some of the areas of highest
potential impact, including to accelerate direct numerical simulations, to improve turbulence closure modeling, and
to develop enhanced reduced-order models. We also discuss emerging areas of machine learning that are promising
for computational fluid dynamics, as well as some potential limitations that should be taken into account.

1 Introduction

The field of numerical simulation of fluid flows is generally known as computational fluid dynamics (CFD). Fluid
mechanics is an area of great importance, both from a scientific perspective and for a range of industrial-engineering
applications. Fluid flows are governed by the Navier–Stokes equations, which are partial differential equations
(PDEs) modeling the conservation of mass and momentum in a Newtonian fluid. These PDEs are non-linear due
to the convective acceleration (which is related to the change of velocity with the position), and they commonly
exhibit time-dependent chaotic behavior, known as turbulence. Solving the Navier–Stokes equations for turbulent
flows requires numerical methods that may be computationally expensive, or even intractable at high Reynolds
numbers, due to the wide range of scales in space and time necessary to resolve these flows. There are various
approaches to numerically solve these equations, which can be discretized using methods of different orders, for
instance finite-difference [1], finite-volume [2], finite-element [3], spectral methods [4], and so forth. Furthermore,
turbulence can be simulated with different levels of fidelity and computational cost.

At the same time, we are experiencing a revolution in the field of machine learning (ML), which is enabling
advances across a wide range of scientific and engineering areas [5–9]. Machine learning is a subfield of the broader
area of artificial intelligence (AI), which is focused on the development of algorithms with the capability of learning
from data without explicit mathematical models [10]. Many of the most exciting advances in ML have leveraged
deep learning, based on neural networks (NNs) with multiple hidden layers between the input and the output. One
key aspect contributing to the remarkable success of deep learning is the ability to learn in a hierarchical manner:
while initial layers learn simple relationships in the data, deeper layers combine this information to learn more
abstract relationships. Many physical problems exhibit this hierarchical behavior, and can therefore be effectively
modelled using deep learning, and machine learning more generally.

In this Perspective, we focus on the potential of machine learning to improve CFD, including possibilities to
increase the speed of high-fidelity simulations, develop turbulence models with different levels of fidelity, and
produce reduced-order models beyond what can be achieved with classical approaches. Several authors have sur-
veyed the potential of machine learning to improve fluid mechanics [11, 12], including topics beyond the scope
of CFD, such as experimental techniques, control applications, and related fields. Others have reviewed more spe-
cific aspects of ML for CFD, such as turbulence closure [13, 14] and heat-transfer aspects of CFD for aerodynamic
optimization [15]. Our discussion will address the middle ground of ML for CFD more broadly, with a schematic
representation of topics covered in Fig. 1. Approaches to improve CFD with ML are aligned with the larger efforts
to incorporate ML into scientific computing, for instance via physics-informed neural networks (PINNs) [16, 17] or
to accelerate computational chemistry [8, 18].
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Figure 4: Schematic of neural-network autoencoders for dimensionality reduction and model identification.

Reduced-order models are typically designed to balance efficiency and accuracy. ML solutions further improve the
efficiency by reducing the effective dimension of the model and increasing the accuracy through better modeling of
how these few variables co-evolve in time. In this figure, the input is a high-resolution flow field evolving in time
(t) and the output is a reconstruction of that field from the latent space. a) Classic proper orthogonal decomposi-
tion/principal component analysis (POD/PCA) may be viewed as a shallow autoencoder with a single encoder U>

and decoder V layers, together with linear activation units. For the flow past a cylinder example shown, the dynam-
ics evolve in a three-dimensional coordinate system. b) A deep, multi-level autoencoder with mulit-layer encoder
' and decoder  , as well as nonlinear activation functions provides enhanced nonlinear coordinates on a mani-
fold. The cylinder flow now evolves on a two-dimensional submanifold. c) The classic Galerkin-projection model,
obtained by projecting the governing Navier–Stokes equations onto an orthogonal basis. The Galerkin-projection
model in c) can be replaced by more generic machine-learning regressions in d), such as long-short-term-memory
(LSTM) networks, reservoir networks or sparse nonlinear models to represent the nonlinear dynamical system
ż = f(z).

opportunity to embed partial knowledge of the physics, such as conservation laws [118], symmetries [120], and
invariances [131–133]. It may also be possible to directly impose stability in the learning pipeline [118, 134, 135].

The ultimate goal for machine-learning ROMs is to develop models that have improved accuracy and efficiency,
better generalizability to new initial and boundary conditions, flow configurations, varying parameters, as well
as improved model interpretability, ideally with less intrusive methods and less data. Enforcing partially-known
physics, such as symmetries and other invariances, along with sparsity, is expected to be critical in these efforts. It is
also important to continue integrating these efforts with the downstream applications of control and optimization.
Finally, many applications of fluid dynamics involve safety-critical systems, and therefore certifiable models are
essential.

5 Emerging possibilities and outlook

In this Perspective we have provided our view on the potential of ML to advance the capabilities of CFD, focusing on
three main areas: accelerating simulations, enhancing turbulence models, and improving reduced-order models. In
Table 1 we highlight some examples of application within each of the three areas. There are also several emerging
areas of ML that are promising for CFD, which we discuss in this section. One area is non-intrusive sensing -
that is the possibility of performing flow predictions based on, for instance, information at the wall. This task,
which has important implications for closed-loop flow control [136], has been carried out via CNNs in turbulent
channels [137]. In connection to the work by Guastoni et al. [137], there are a number of studies documenting the
possibility of performing super-resolution predictions (e.g. when limited flow information is available) in wall-
bounded turbulence using CNNs, autoencoders and generative-adversarial networks (GANs) [138–141]. Another
promising direction is the imposition of constraints based on physical invariances and symmetries on the ML model,
which has been used for SGS modeling [131], ROMs [118], and for geophysical flows [133].
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Abstract

The field of fluid mechanics is rapidly advancing, driven by unprece-

dented volumes of data from field measurements, experiments and large-

scale simulations at multiple spatiotemporal scales. Machine learning

o↵ers a wealth of techniques to extract information from data that

could be translated into knowledge about the underlying fluid me-

chanics. Moreover, machine learning algorithms can augment domain

knowledge and automate tasks related to flow control and optimiza-

tion. This article presents an overview of past history, current devel-

opments, and emerging opportunities of machine learning for fluid me-

chanics. It outlines fundamental machine learning methodologies and

discusses their uses for understanding, modeling, optimizing, and con-

trolling fluid flows. The strengths and limitations of these methods are

addressed from the perspective of scientific inquiry that considers data

as an inherent part of modeling, experimentation, and simulation. Ma-

chine learning provides a powerful information processing framework

that can enrich, and possibly even transform, current lines of fluid me-

chanics research and industrial applications.
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Figure 8

Deep reinforcement learning schematic (left), and application to the study of the collective motion of fish via the
Navier-Stokes equations (right; Verma et al. (2018)).Symbols: St:state, ⇡w:policy, W :parameters, m(St),�(St):mean,
standard deviation for action

or the collective motion of fish (Gazzola et al. 2016; Novati et al. 2017; Verma et al. 2018),

maximize the range of simulated (Reddy et al. 2016) and robotic (Reddy et al. 2018) gliders,

optimize the kinematic motion of UAVs (Kim et al. 2004; Tedrake et al. 2009), and optimize

the motion of microswimmers (Colabrese et al. 2017, 2018). Figure 8 provides a schematic of

reinforcement learning with an examples showcasing its application to collective swimming

as resolved by the Navier-Stokes equations.

Reinforcement
Learning: An agent
learns a policy of
actions that
maximize its long
term rewards by
interacting with its
environment.

Fluid mechanics knowledge is essential for applications of RL, as success or failure hinges

on properly selecting states, actions, and rewards that reflect the governing mechanisms of

the flow problem. Natural organisms and their sensors, such as the visual system in a bird

or the lateral line in a fish, can guide the choice of states. As sensor technologies progress at

a rapid pace, the algorithmic challenge may be that of optimal sensor placement (Papadim-

itriou & Papadimitriou 2015; Manohar et al. 2018). The actions reflect the flow actuation

device and may involve body deformation or wing flapping. Rewards may include energetic

factors, such as the cost of transport, or proximity to the center of a fish school to avoid pre-

dation. The computational cost of RL remains a challenge to its widespread adoption, but

we believe this deficiency can be mediated by the parallelism inherent to RL. There is grow-

ing interest in methods designed to be transferable from low-accuracy (e.g. 2-dimensional)

to high-accuracy (e.g. 3-dimensional) simulations (Verma et al. 2018), or from simulations

to related real-world applications (Richter et al. 2016).

5. DISCUSSION AND OUTLOOK

This review presents machine learning algorithms that could augment existing e↵orts for

the study, modeling and control of fluid mechanics. The interface of the two fields has a long

history and has attracted a renewed interest in the last few years. The review addresses

applications of machine learning in problems of flow modeling, optimization, and control

in experiments and simulations. It highlights some successes of machine learning in critical

fluid mechanics tasks, such as dimensionality reduction, feature extraction, PIV processing,

super-resolution, reduced-order modeling, turbulence closure, shape optimization, and flow

control. It discusses lessons learned from these e↵orts and justify the current interest in

light of the technological advances of our times. Machine learning comprises data-driven

optimization and applied regression techniques that are well-suited for high-dimensional,

nonlinear problems, such as those encountered in fluid dynamics; fluid mechanics expertise

will be necessary to formulate these optimization and regression problems.

Machine learning algorithms present an arsenal of tools, largely unexplored in fluid
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an obvious difference in the learning curves is observed: the learnings
using transfer learning start with much higher initial !CD values than
those started from randomly initialized policies. This indicates that the
policies learnt at Re¼ 100 do not work well at Re¼ 1000, due to the
big difference in the flow dynamics. Nevertheless, all the learning
curves eventually approach to similar low !CD values, mutually

verifying the effectiveness of learnings using both strategies. Note that,
compared to the learnings at Re¼ 100, all these learnings take much
more episodes to converge, revealing the difficulty in controlling cha-
otic flow systems.

Once the trainings are done, the converged policies from each
training are evaluated in the deterministic mode using the highly
resolved DNS configuration (i.e., configuration V in Table I). As
shown in Fig. 6(a), the evident reductions in !CD (ranging from 27.4%
to 34.2%, with a mean value 30.7%) predicted by DNS simulations
confirm that the policies trained using less accurate LES simulations
are valid. The slight variation is within expectation, which arises from
the eminently random exploration mechanism present in the PPO
algorithm and the strong nonlinearity and chaoticity of the turbulent
flow considered here. Meanwhile, the fluctuation in CD is also greatly
mitigated by the control. As revealed in Fig. 6(b), lift fluctuations are
also reduced by the control. The maximum reduction of 55.2% occurs
in case II. However, the control generally leads to asymmetric lift fluc-
tuations, resulting in nonzero !CL. This is similar to the findings of sev-
eral previous works,35–37 in which it was found that control leading to
an asymmetric flow configuration is what provides the largest drag
reduction behind the symmetric fluidic pinball, though at the price of
the creation of a biased lift.

Two cases with the smallest lift fluctuations, i.e., cases II and VI,
are chosen to reveal more details about control effects of these learnt
policies. The evolution of the cylinder wakes in these two controlled
cases as well as the uncontrolled case in compared in the videos associ-
ated with Fig. 7. The temporal variations of CD, CL, and jet velocity ujet
presented in Fig. 8 clearly show the irregular feature of the control in

FIG. 7. Videos showing the evolution of the cylinder wakes without control (a), with
control learnt in case II (b), and with control learnt in case VI (c). Multimedia views:
https://doi.org/10.1063/5.0037371.2; https://doi.org/10.1063/5.0037371.3

FIG. 8. Temporal variations of drag coefficient (a) and (b), lift
coefficient (c) and (d), and jet velocity (e) and (f) for two rep-
resentative cases evaluated using well trained policies and in
deterministic mode: case II (left column) and case VI (right
column).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 037121 (2021); doi: 10.1063/5.0037371 33, 037121-5
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Thus, given the large collection of candidate terms for constructing
PDEs, we use sparse regression methodologies to determine which
right-hand-side terms are contributing to the dynamics without an in-
tractable (np-hard) combinatorial brute-force search across all possible
term combinations.

Upon discretization, the right hand side of Eq. 1 can be expressed
as a function of U, which is the discrete version of u(x, t) and its de-
rivatives, through the matrix Q(U, Q), where the column vector Q
contains any additional input terms to the right hand side. Each col-
umn of the library Q(U, Q) corresponds to a specific candidate term
for the governing equation, as shown in Fig. 1 (1b). The PDE evolu-
tion can be expressed in this library as follows

Ut ¼ QðU; QÞx ð2Þ

Each nonzero entry in x corresponds to a term in the PDE, and for
canonical PDEs, the vector x is sparse, meaning that only a few
terms are active. We explicitly show in Materials and Methods how
to construct Q(U, Q) and solve for the vector x, thus identifying the
terms in the PDE.

Discovering the Navier-Stokes equations
Figure 1 demonstrates the algorithmic procedure for successfully
identifying the correct PDE dynamics for a given set of measurements
from a physical system. Specifically, fluid flow around a cylinder is
simulated at a given Reynolds, and measurements of the vorticity
and velocity can be densely or sparsely sampled to correctly recon-
struct the well-known Navier-Stokes equations. Remarkably, the coef-
ficients of the PDE and Reynolds number are identified within a

fraction of a percent accuracy. This figure represents our innovative
mathematical structure that combines sparse regression, a library of
potential functional forms, and parsimonious model selection.

Figure 1 also demonstrates that, for large data sets, such as those
generated from two- and three-dimensional problems, PDE-FIND
can be effectively used on subsampled data. This distinction is funda-
mentally important because full-state measurements are often compu-
tationally and experimentally prohibitive to collect and may also make
the regression needlessly expensive. We randomly select a set of spatial
points and uniformly subsample in time, resulting in the use of only a
fraction of the data set. Mathematically, this amounts to ignoring a
fraction of the rows in the linear system Ut = Q(U, Q)x, as illustrated
in Fig. 1 (2a and 2b). Although we only use a small fraction of the
spatial points in the linear system, nearby points are needed to eval-
uate the derivative terms in the library. The derivatives are computed
using a small number of spatially localized points near each mea-
surement position via polynomial interpolation. Therefore, whereas
subsampling uses only a small fraction of the points in the regression,
we are using local information around each measurement.

Previous sparse identification algorithms (16) faced a number of
challenges: They were not able to handle subsampled spatial data,
and the algorithm did not scale well to high-dimensional measure-
ments. Standard model reduction techniques such as proper orthogonal
decomposition (POD) were used to overcome the high-dimensional
measurements, allowing for a lower-order ODE model to be con-
structed on energetic POD modes. This procedure resembles the
standard Galerkin projection onto POD modes (18). In contrast, the
PDE-FIND algorithm identifies a PDE directly from subsampled mea-
surement data.

t
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= 0.0099ωxx + 0.0099ωyy

ωt + ( ·∇)ω =
1

Re
∇2ω

Cωt = CΘ(ω, u, v)

CΘ

ωt = Θ(ω, u, v)

C

(ω, u, v)1

(ω, u, v)2

(ω, u, v)3

ω
t

ω ω
x1 u v ω
y

u
vω

y
y

u
vω

x
y

arg min
ξ

‖Θξ ξ− ωt‖2
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-

ξ
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Fig. 1. Steps in the PDE functional identification of nonlinear dynamics (PDE-FIND) algorithm, applied to infer the Navier-Stokes equations from data. (1a)
Data are collected as snapshots of a solution to a PDE. (1b) Numerical derivatives are taken, and data are compiled into a large matrix Q, incorporating candidate terms
for the PDE. (1c) Sparse regressions are used to identify active terms in the PDE. (2a) For large data sets, sparse sampling may be used to reduce the size of the problem.
(2b) Subsampling the data set is equivalent to taking a subset of rows from the linear system in Eq. 2. (2c) An identical sparse regression problem is formed but with
fewer rows. (d) Active terms in x are synthesized into a PDE.
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Data-driven discovery of partial differential equations
Samuel H. Rudy,1* Steven L. Brunton,2 Joshua L. Proctor,3 J. Nathan Kutz1

We propose a sparse regression method capable of discovering the governing partial differential equation(s) of
a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-
promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most
accurately represent the data, bypassing a combinatorially large search through all possible candidate models.
The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto
analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spa-
tially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally
efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific
domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the
method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time
series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear
wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new tech-
nique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where
first-principles derivations are intractable.

INTRODUCTION
Data-driven discovery methods, which have been enabled in the
past decade by the plummeting cost of sensors, data storage, and com-
putational resources, have a transformative impact on the sciences, fa-
cilitating a variety of innovations for characterizing high-dimensional
data generated from experiments. Less well understood is how to un-
cover underlying physical laws and/or governing equations from time
series data that exhibit spatiotemporal activity. Traditional theoretical
methods for deriving the underlying partial differential equations
(PDEs) are rooted in conservation laws, physical principles, and/or
phenomenological behaviors. These first-principles derivations lead
to many of the canonical models ubiquitous in physics, engineering,
and the biological sciences. However, there remain many complex sys-
tems that have eluded quantitative analytic descriptions or even charac-
terization of a suitable choice of variables (for example, neuroscience,
power grids, epidemiology, finance, and ecology). We propose an alter-
native method to derive governing equations based solely on time series
data collected at a fixed number of spatial locations. Using innovations
in sparse regression, we discover the terms of the governing PDE that
most accurately represent the data from a large library of potential can-
didate functions. Measurements can be made in an Eulerian framework,
where the sensors are fixed spatially, or in a Lagrangian framework,
where the sensors move with the dynamics. We demonstrate the success
of the method by rediscovering a broad range of physical laws solely
from time series data.

Methods for data-driven discovery of dynamical systems (1) in-
clude equation-free modeling (2), artificial neural networks (3), non-
linear regression (4), empirical dynamic modeling (5, 6), normal form
identification (7), nonlinear Laplacian spectral analysis (8), modeling
emergent behavior (9), and automated inference of dynamics (10–12).
In this series of developments, seminal contributions leveraging sym-
bolic regression and an evolutionary algorithm (13, 14) were capable
of directly determining nonlinear dynamical system from data. More

recently, sparsity (15) has been used to robustly determine, in a highly
efficient computational manner, the governing dynamical system
(16, 17). Both the evolutionary (14) and sparse (16) symbolic regres-
sion methods avoid overfitting by selecting parsimonious models that
balance model accuracy with complexity via Pareto analysis. The
method we present is able to select, from a large library, the correct
linear, nonlinear, and spatial derivative terms, resulting in the identi-
fication of PDEs from data. Only those terms that are most informa-
tive about the dynamics are selected as part of the discovered PDE.
The innovation presented here is critically important because it effi-
ciently handles spatiotemporal data, which is a fundamental charac-
teristic of many canonical models. Previous sparsity-promoting methods
are able to identify ordinary differential equations (ODEs) from data
but are not able to handle spatiotemporal data or high-dimensional
measurements (16). Our novel methodology has several advantageous
practical characteristics: Measurements can be collected in either a
fixed or moving frame (Eulerian or Lagrangian), allowing for a broad
application to a variety of experimental data; the algorithm can also
efficiently handle high-dimensional data through innovative sampling
strategies. The algorithm, PDE functional identification of nonlinear dy-
namics (PDE-FIND), is applied to a wide range of canonical models.

RESULTS
We consider a parameterized and nonlinear PDE of the general form

ut ¼ Nðu; ux; uxx;⋯; x; mÞ ð1Þ

where the subscripts denote partial differentiation in either time or
space, and N(∙) is an unknown right-hand side that is generally a non-
linear function of u(x, t), its derivatives, and parameters in m. Our ob-
jective is to construct N(∙) given time series measurements of the
system at a fixed number of spatial locations in x. A key assumption
is that the function N(∙) consists of only a few terms, making the func-
tional form sparse relative to the large space of possible contributing
terms. As an example, Burgers’ equation (N = −uux + muxx) and the
harmonic oscillator ðN ¼ $imx2 $ iℏuxx=2Þ each have two terms.
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an obvious difference in the learning curves is observed: the learnings
using transfer learning start with much higher initial !CD values than
those started from randomly initialized policies. This indicates that the
policies learnt at Re¼ 100 do not work well at Re¼ 1000, due to the
big difference in the flow dynamics. Nevertheless, all the learning
curves eventually approach to similar low !CD values, mutually

verifying the effectiveness of learnings using both strategies. Note that,
compared to the learnings at Re¼ 100, all these learnings take much
more episodes to converge, revealing the difficulty in controlling cha-
otic flow systems.

Once the trainings are done, the converged policies from each
training are evaluated in the deterministic mode using the highly
resolved DNS configuration (i.e., configuration V in Table I). As
shown in Fig. 6(a), the evident reductions in !CD (ranging from 27.4%
to 34.2%, with a mean value 30.7%) predicted by DNS simulations
confirm that the policies trained using less accurate LES simulations
are valid. The slight variation is within expectation, which arises from
the eminently random exploration mechanism present in the PPO
algorithm and the strong nonlinearity and chaoticity of the turbulent
flow considered here. Meanwhile, the fluctuation in CD is also greatly
mitigated by the control. As revealed in Fig. 6(b), lift fluctuations are
also reduced by the control. The maximum reduction of 55.2% occurs
in case II. However, the control generally leads to asymmetric lift fluc-
tuations, resulting in nonzero !CL. This is similar to the findings of sev-
eral previous works,35–37 in which it was found that control leading to
an asymmetric flow configuration is what provides the largest drag
reduction behind the symmetric fluidic pinball, though at the price of
the creation of a biased lift.

Two cases with the smallest lift fluctuations, i.e., cases II and VI,
are chosen to reveal more details about control effects of these learnt
policies. The evolution of the cylinder wakes in these two controlled
cases as well as the uncontrolled case in compared in the videos associ-
ated with Fig. 7. The temporal variations of CD, CL, and jet velocity ujet
presented in Fig. 8 clearly show the irregular feature of the control in

FIG. 7. Videos showing the evolution of the cylinder wakes without control (a), with
control learnt in case II (b), and with control learnt in case VI (c). Multimedia views:
https://doi.org/10.1063/5.0037371.2; https://doi.org/10.1063/5.0037371.3

FIG. 8. Temporal variations of drag coefficient (a) and (b), lift
coefficient (c) and (d), and jet velocity (e) and (f) for two rep-
resentative cases evaluated using well trained policies and in
deterministic mode: case II (left column) and case VI (right
column).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 037121 (2021); doi: 10.1063/5.0037371 33, 037121-5
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FIG. 17. Comparison of the time complexity of Mutation++ with Stefan-Maxwell di↵usion (dotted black line), the purely local
version (solid red line) and the data-driven model (dash dotted blue line). The best non-linear least-squares fit of the form
CN

↵ is added.

All curve fits, shown in Fig. 17, suggest that, in practice, the models scale as O(Nt) with exponents close to unity.
The ratio of the prefactor is CML/CM++ ⇡ 0.43 when using Mutation++ in its local version. We can therefore expect
a 57% CPU gain by using the data-driven model instead of Mutation++. In fact, we assessed a CPU time reduction
of 50% during the simulation, with a grid of size N ⇡ 400, 000. This confirms a speedup through the use of a surrogate
model. Secondly, the speed-up is even more significant when the library also solves for the Stefan-Maxwell di↵usion
problem at each grid point. Although not rigorously a one-to-one model comparison anymore, the data-driven model
now performs 70% faster without any loss of accuracy. In fact, Fick’s law based di↵usion model have been shown to be
highly accurate in hypersonic simulations. Moreover, fine tuning of the hyperparameters may allow even higher CPU
gains as CML is proportional to a linear combination of the hyperparameters. Finally, we stress that the data-driven
algorithm is a python implementation competing with a compiled C++ library. The speed-up reported here can be
significantly increased by porting the model to a compiled language. It is also believed that the speed-up would be
more significant when the dimensionality of the input space increases to include more chemical species. We thus
expect even larger CPU gains in the future with an optimized implementation and added adaptivity.

E. Application to the SBLI case

Following the same steps, the model is trained on the SBLI case. The model has the following specifications:
d = 3, c = 3, NR = 250. In this case, the dimensions of the latent space and the number of clusters are higher
due to the more complex thermodynamic manifold learned by the IO-E. A two dimensional projection of the three
dimensional manifold is presented in Fig. 18a. In this plane, distinct thermodynamic regions (i.e. di↵erent clusters)
are wrapped around a scarcely populated center area. This can be explained by the impinging, recirculation and
reflected shocks that induce abrupt change in the thermodynamic state. These regions and their borders become even
more meaningful when reported to their physical location in the flow, as seen on Fig. 18b where a numerical Schlieren
is superposed. The green cluster corresponds to mildly hot conditions with high density, i.e. the freestream and post
impinging shock conditions. After the recirculation shock, the thermodynamic states shift instantaneously to higher
densities and temperatures, represented by the blue cluster. However, close to the apex of the recirculation bubble,
the expansion fan decreases these thermodynamic variables, inducing a shift back to the green cluster. Finally, the
red cluster, found in the boundary layer, corresponds to high temperatures and low densities. At the core of the
recirculation bubble, temperature decreases and density increases, which brings the local state vector back to the
green cluster.

In a closed-loop simulation, the model remains stable while maintaining a factor 2 speed-up in predicting thermo-
chemical properties. In fact, Fig. 19b and Fig. 19a show that the wall pressure and skin friction remain in excellent
agreement with the baseflow solution after 2 flow-through times. The only discrepancy with the initial solution is
observed for atomic nitrogen mass concentration in Fig. 19c. However, it is present in such small quantities that it
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Mutation ++ (lines) 
Mutation light (symbols)
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