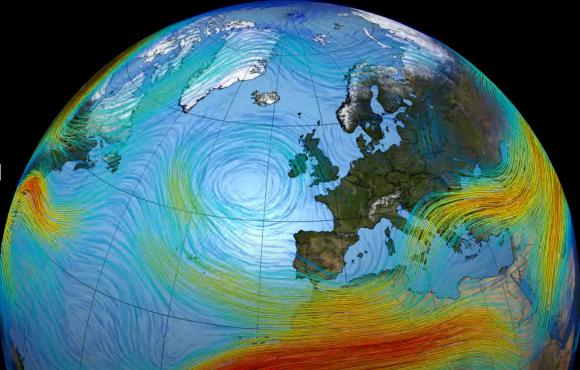
Learning Stochastic Dynamics with Neural Networks to study Zonal Jets

Ira Shokar^{1,2}, Peter Haynes¹ & Rich Kerswell¹ ¹DAMTP, Cambridge; ² UKRI AI4ER CDT

Project Goal:

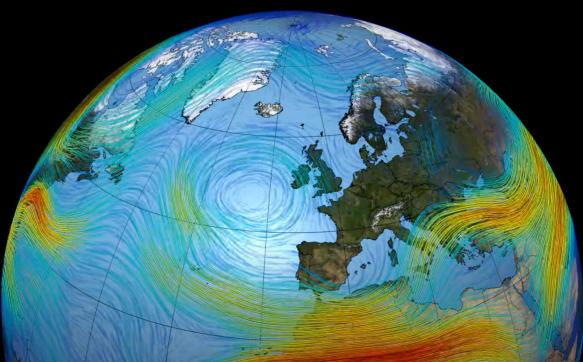
A Deep Learning approach to deriving a reduced-order model of stochastically forced atmospheric zonal jets, that provides a speed-up in emulating the jets, over numerical integration.



LIFD Workshop March 2023

Motivation: Planetary Zonal Jets

- Jet streams have a major influence over regional weather patterns, transporting quantities such as momentum and heat and tracers, such as ozone and water vapour.
- Within CMIP6 projections there are biases in the representation of jets^[1].
- The computational expense of GCMs results in requiring many processes to be parameterised.



[1] Dorrington et al. doi:10.5194/wcd-3-505-2022

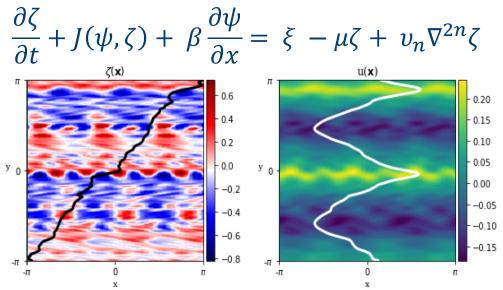
Source: NASA Scientific Visualization Studio

- Starting with the shallow water equations we neglect stratification and solve the system on a 2D plane with periodic boundary conditions.
- We incorporate planetary rotation by adopting a beta-plane approximation.
- Parameterise the turbulence due to baroclinic instabilities with a stochastic forcing ξ :

$$\frac{\partial \zeta}{\partial t} + J(\psi,\zeta) + \beta \frac{\partial \psi}{\partial x} = \xi - \mu \zeta + \upsilon_n \nabla^{2n} \zeta$$

- Starting with the shallow water equations we neglect stratification and solve the system on a 2D plane with periodic boundary conditions.
- We incorporate planetary rotation by adopting a beta-plane approximation.
- Parameterise the turbulence due to baroclinic instabilities with a stochastic • forcing - ξ : \checkmark $\frac{d\psi}{\partial t} + J(\psi,\zeta) + \beta \frac{d\psi}{\partial L}$ $\zeta = \nabla^2 \psi$: the 🔺 ξ relative vorticity ν : hyperviscosity β : the Rossby parameter - μ : frictional damping rate the latitudinal gradient when ψ : the streamfunction, with linearising the Coriolis corresponding velocity field parameter, $f = f_0 + \beta y$ $(u,v) = (-\partial_v \psi, \partial_x \psi)$ I: the Jacobian determinant

- Starting with the shallow water equations we neglect stratification and solve the system on a 2D plane with periodic boundary conditions.
- We incorporate planetary rotation by adopting a beta-plane approximation.
- Parameterise the turbulence due to baroclinic instabilities with a stochastic forcing ξ :



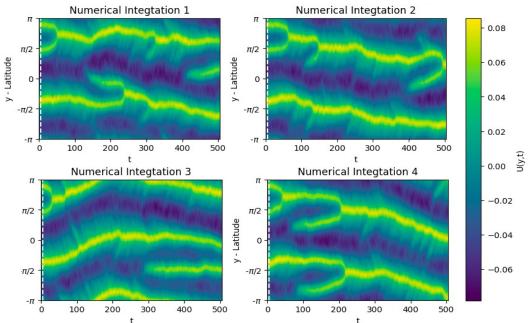
• Studying zonally-oriented flows, we perform a Reynolds decomposition, to obtain an EOM for the zonally-averaged zonal velocity $(U(y,t) = \overline{u}(y,t) = u(x,y,t) - u'(x,y,t))$:

$$\frac{\partial U}{\partial t} + \frac{\partial}{\partial y} (\overline{u'v'}) = -\mu U + \nu_n \frac{\partial^{2n}}{\partial y^{2n}} U$$

• Studying zonally-oriented flows, we perform a Reynolds decomposition, to obtain an EOM for the zonally-averaged zonal velocity $(U(y,t) = \overline{u}(y,t) = u(x,y,t) - u'(x,y,t))$:

$$\frac{\partial U}{\partial t} + \frac{\partial}{\partial y} (\overline{u'v'}) = -\mu U + \nu_n \frac{\partial^{2n}}{\partial y^{2n}} U$$

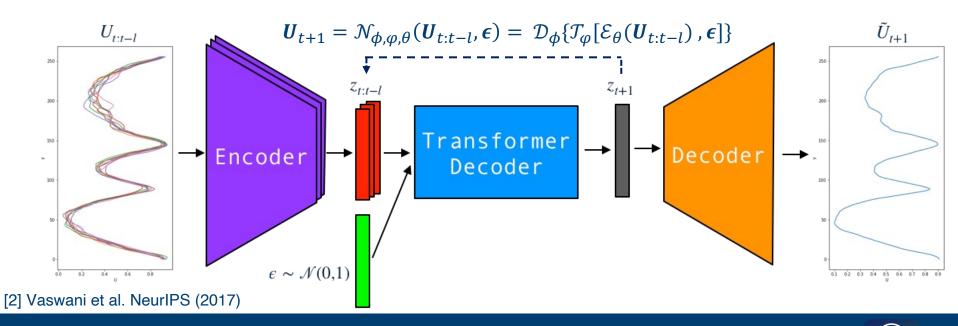
- Zonal Jets exhibit wandering, merging and nucleating behaviour.
- Can ML learn the underlying dynamics given only U(y, t), implicitly parameterising fluctuation fields (u', v')?



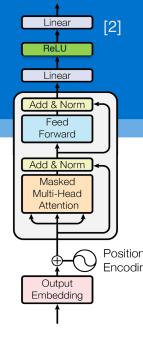
AI4ER

- The equations of motion lie on a manifold, \mathcal{M} , with a lower-degrees of freedom than the input fields $D_{\mathcal{M}} \ll D$.
- We want to learn a mapping to this latent space, $Z_{t:t-l} = \mathcal{E}_{\theta}(U_{t:t-l})$, induce the forcing and evolve the system in time, $Z_{t+1} = \mathcal{T}_{\varphi}(Z_{t:t-l}, \epsilon)$, before mapping back to the observed space, $U_{t+1} = \mathcal{D}_{\phi}(Z_{t+l})$.

- The equations of motion lie on a manifold, \mathcal{M} , with a lower-degrees of freedom than the input fields $D_{\mathcal{M}} \ll D$.
- We want to learn a mapping to this latent space, $Z_{t:t-l} = \mathcal{E}_{\theta}(U_{t:t-l})$, induce the forcing and evolve the system in time, $Z_{t+1} = \mathcal{T}_{\varphi}(Z_{t:t-l}, \epsilon)$, before mapping back to the observed space, $U_{t+1} = \mathcal{D}_{\phi}(Z_{t+l})$.

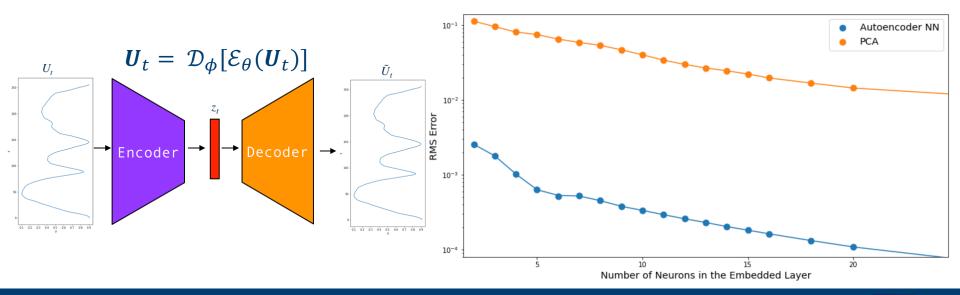


UNIVERSITY OF Learning Stochastic Dynamics with Neural Networks to study Zonal Jets CAMBRIDGE Ira Shokar – LIFD Workshop March 2023

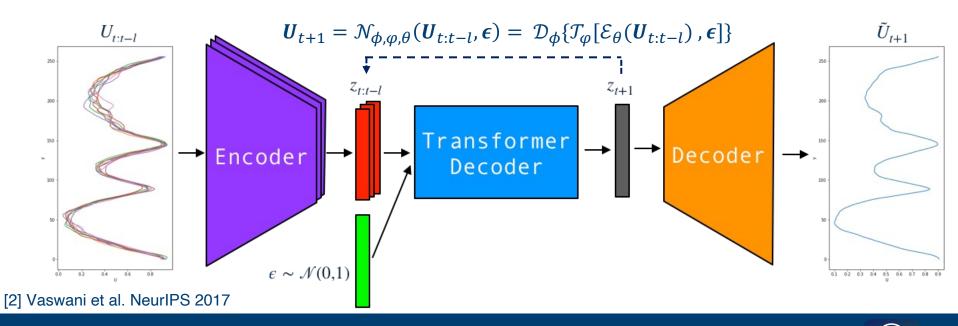


AI4ER

- The equations of motion lie on a manifold, \mathcal{M} , with a lower-degrees of freedom than the input fields $D_{\mathcal{M}} \ll D$.
- SVD/PCA or POD only capture linear manifolds, while Autoencoders use nonlinear dimensionality reduction.
- Compare spatial reduction of snapshots.



- The equations of motion lie on a manifold, \mathcal{M} , with a lower-degrees of freedom than the input fields $D_{\mathcal{M}} \ll D$.
- We want to learn a mapping to this latent space, $Z_{t:t-l} = \mathcal{E}_{\theta}(U_{t:t-l})$, induce the forcing and evolve the system in time, $Z_{t+1} = \mathcal{T}_{\varphi}(Z_{t:t-l}, \epsilon)$, before mapping back to the observed space, $U_{t+1} = \mathcal{D}_{\phi}(Z_{t+l})$.



Linear

ReLU

Linear

Add & Norm Feed Forward

Add & Norm Masked

Multi-Head Attention

Output Embedding

AI4ER

[2]

Positior

Encodir

Objective Function

Continuous Ranked Probability Score (CRPS)^[3]/Energy Score^{[4][5]}:

$$\frac{1}{m} \sum_{i=1}^{m} \|\widetilde{U}_i - U\|^2 - \frac{1}{2m^2} \sum_{i=1}^{m} \sum_{j=1}^{m} \|\widetilde{U}_i - \widetilde{U}_j\|^2$$

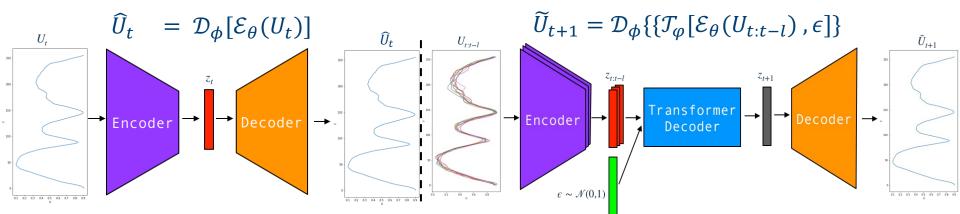
[3] Matheson et al, Management Science (1976), [4] Gneiting et al. doi: 10.1198/016214506000001437 (2012)
[5] Pacchiardi et al. doi: 10.48550/arXiv.2112.08217 (2022)

Objective Function

Continuous Ranked Probability Score (CRPS)^[3]/Energy Score^{[4][5]}:

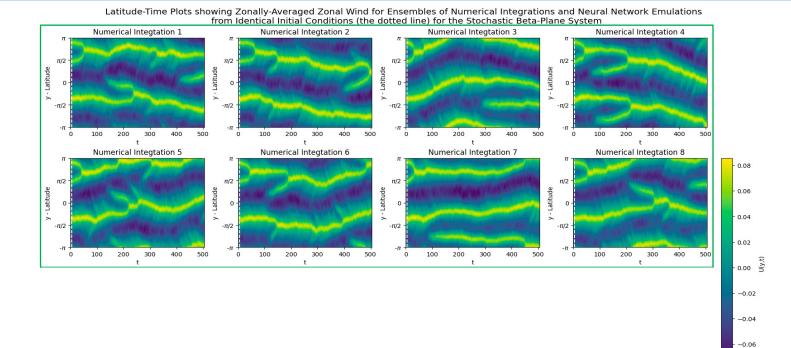
$$\frac{1}{m} \sum_{i=1}^{m} \|\widetilde{U}_i - U\|^2 - \frac{1}{2m^2} \sum_{i=1}^{m} \sum_{j=1}^{m} \|\widetilde{U}_i - \widetilde{U}_j\|^2$$

 $\mathcal{L}_{AE}(\theta,\phi) = ES(\tilde{U}_{t+1}^{(i)}, U_{t+1}^{(i)}) + \gamma \| \hat{U}_t - U_t \|^2; \qquad \mathcal{L}_T(\varphi) = ES(\tilde{U}_{t+1}^{(i)}, U_{t+1}^{(i)})$

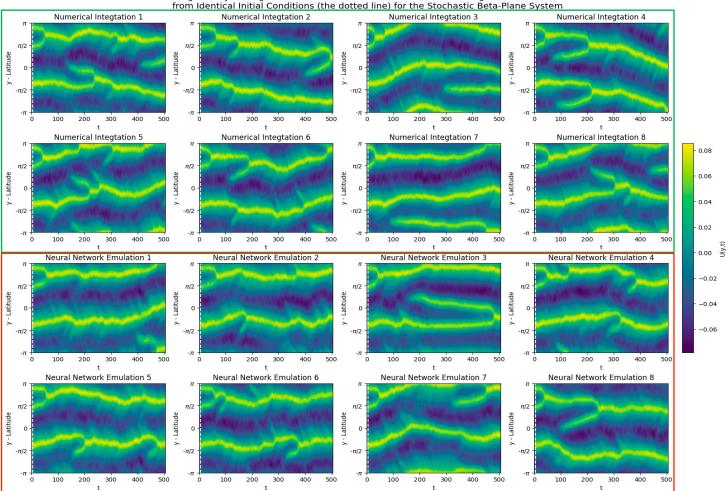


[3] Matheson et al, Management Science (1976), [4] Gneiting et al. doi: 10.1198/016214506000001437 (2012) [5] Pacchiardi et al. doi: 10.48550/arXiv.2112.08217 (2022)

Results - Emulations



Results - Emulations

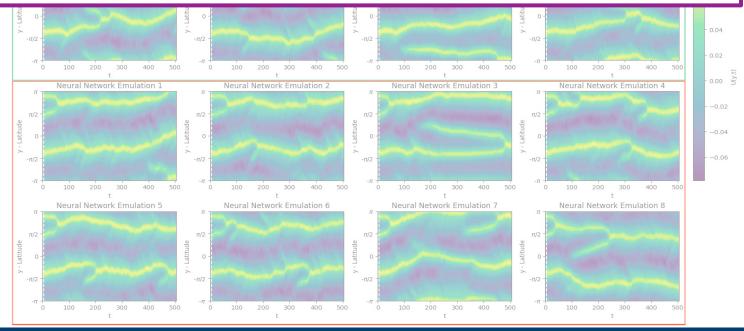


Latitude-Time Plots showing Zonally-Averaged Zonal Wind for Ensembles of Numerical Integrations and Neural Network Emulations

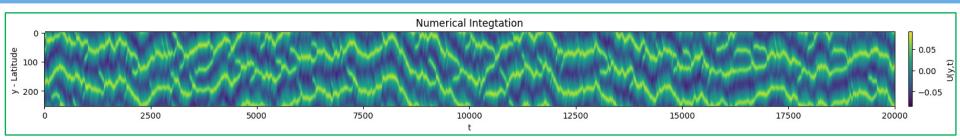
Results - Emulations

- Time to generate 500 time-steps using numerical integration*: ~180 minutes
- Time to generate 500 time-steps using Deep Learning: ~ 5.1 milliseconds
- Speed-up factor: ~2,112,000

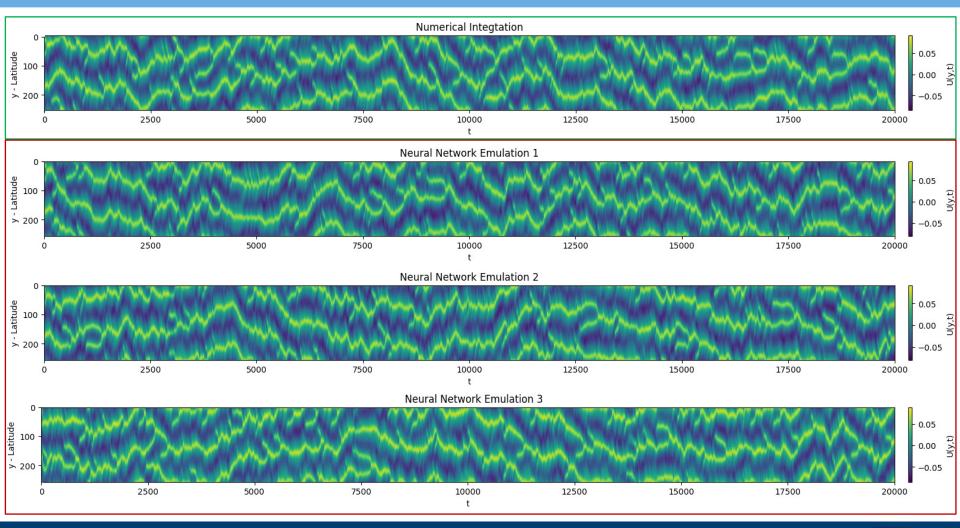
*system solved with time discretisation of 2.5x10³ per output step



Stability - Long Time Emulations



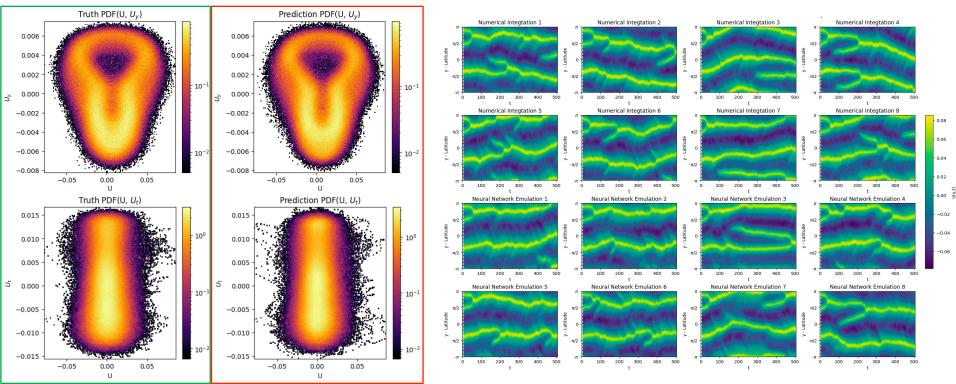
Stability - Long Time Emulations



Evaluation – PDF of Temporal and Spatial Derivates

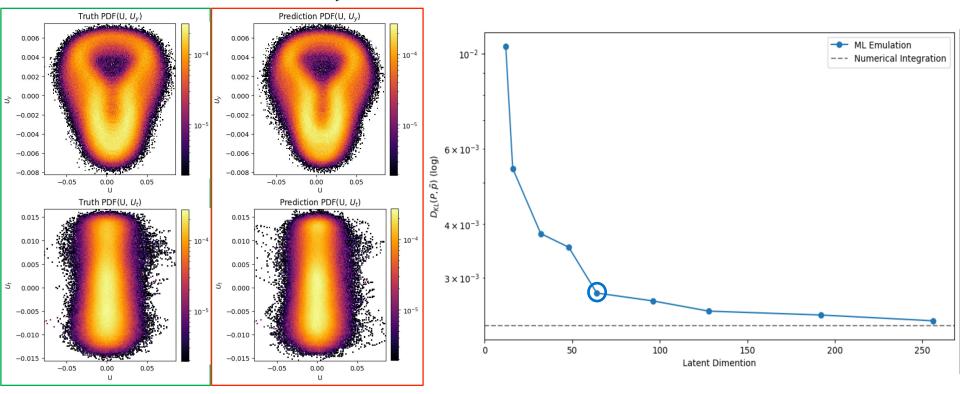
P(U, Uy, Ut)

 $P(\widetilde{U}, \widetilde{U}_{v}, \widetilde{U}_{t})$

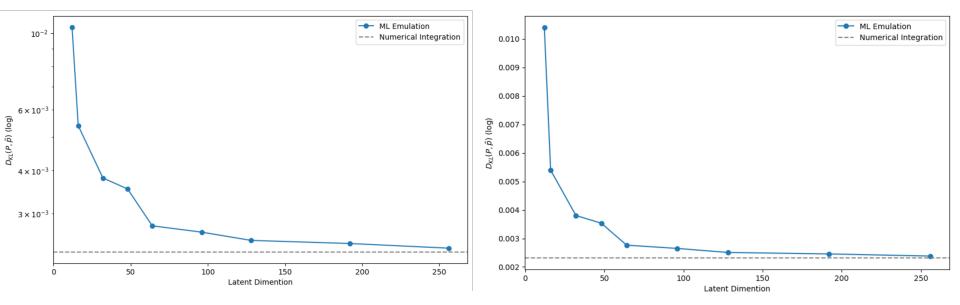


Evaluation – PDF of Temporal and Spatial Derivates

 $P(\widetilde{U},\widetilde{U}_{y},\widetilde{U}_{t})$ P(U, Uy, Ut)

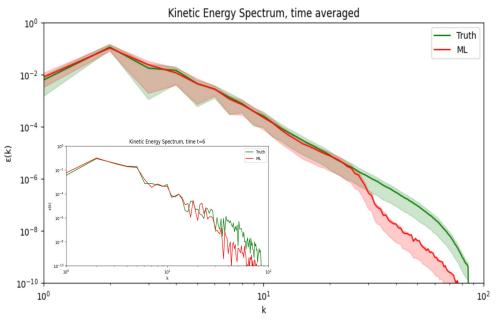


Evaluation – PDF of Temporal and Spatial Derivates



Evaluation – Energy Spectra and Jet Frequency

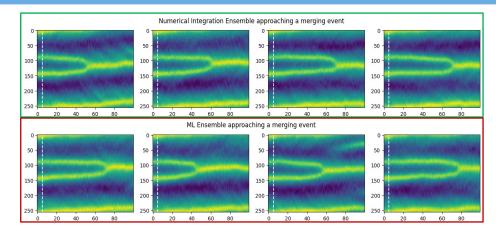
Comparing instantaneous and timeaveraged energy spectra.

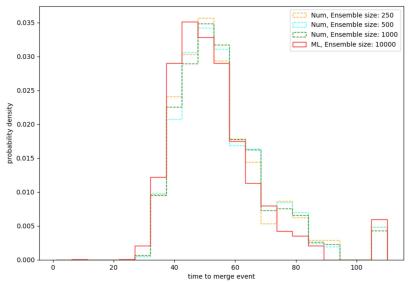


Spectral Bias in Generative Models^[6]

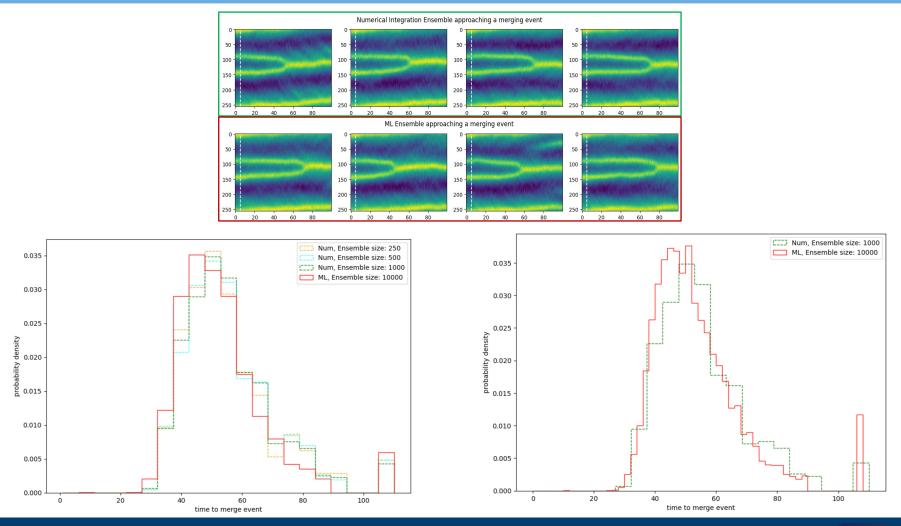
[6] Schwarz et al. NeurIPS (2022)

Evaluation – Time to Merging Event Distributions

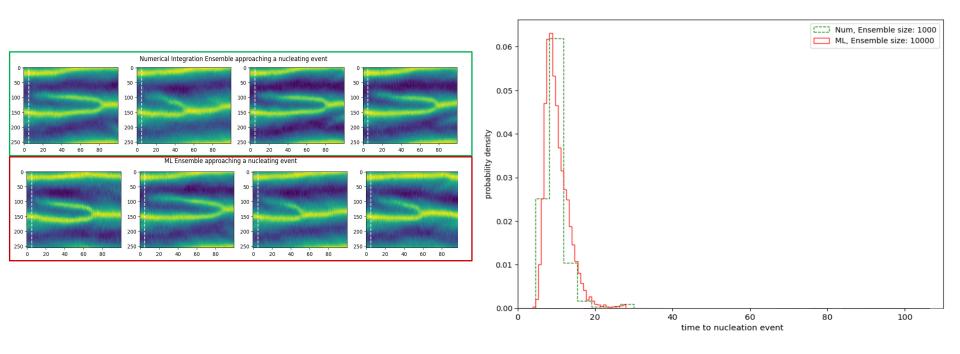




Evaluation – Time to Merging Event Distributions



Evaluation – Time to Nucleating Event Distributions



Next Steps

Exciting Questions

- Can we quantify if some states are more 'stable' than others?
- What can the latent representation tell us about the dynamics of the system?
- What can the latent representation tell us about how the ML model has learned the system?
- What can the transformer attention weights tell us?

Future Applications

- Move to the 2-D case to model u(x, y, t) = U + u', or model u', as a parameterisation.
- Model a two-layer/ multi-layer system in *z* that generates its own turbulence without requiring of stochastic forcing?
 - Will this now chaotic 3-D model still be best captured by a probabilistic ML approach despite being deterministic?
- Ultimately, model more complex/realistic geophysical processes, eg. parameterisations used in operational forecasts to reduce their computational cost.

