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What Problem are we Tackling?
Super-resolution with no examples

The Super-Resolution Problem

How can we learn to super-resolve sparse observations with no high-resolution examples?

Dynamical System

Sparse Observations
Sensor Measurements

Reconstructed Fields
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The Dynamical System
Kolmogorov Flow

𝜕!𝒖 −𝒩 𝒖; 𝜆 = 0

ℛ 𝒖, 𝜆 ≡ 𝜕!𝒖 −𝒩 𝒖; 𝜆

Prototypical Dynamical System / Residual

Navier-Stokes:
The Kolmogorov Flow

2D Incompressible
Periodic spatial boundary conditions on Ω ∈ 0, 2𝜋 ⊂ ℝ"

Periodic forcing in a single-direction.

Sample Fields Energy Spectrum :: RE = 34
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𝜕!𝒖 + 𝒖 ⋅ ∇ 𝒖 = −∇𝑝 + 𝜈Δ𝒖 + 𝑔(𝒙)

Daniel Kelshaw



Our Approach for Super-Resolution
Physics-Informed Convolutional Neural Network

Introducing the Model

𝑓#: 𝑢 𝛀𝑳, 𝑡 → 𝑢 𝛀𝑯, 𝑡
Our goal is to find a function 𝑓# capable of mapping the low-resolution field to the high-resolution field.

Dynamical System

Sparse Observations
Sensor Measurements

Machine Learning Model

Reconstructed Fields
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Methodology

ℒ# = ℒ𝒪 + 𝛼ℒℛ

𝑓#: 𝑢 𝛀𝑳, 𝑡 → 𝑢 𝛀𝑯, 𝑡

𝜃∗ = argmin
#

ℒ#

Setting up the Optimisation Problem

The Task

Defining the Loss

Minimise the error of 
predictions at sensor locations

Minimise the residual of 
the predictions

More on the Residual Loss

Differentiable pseudospectral discretisation for
the differential operator:

𝑠: L𝑢 𝒌, 𝑡 → 𝜕! L𝑢 𝒌, 𝑡

1. Euler forward-difference to approximate derivative.
2. Compare with analytical derivative from the solver.

Key Point: This allows us to embed knowledge on the
dynamical system in the loss a priori.

Machine Learning Model

6
Daniel Kelshaw



Methodology
Observation-Based Loss
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Network Predictions

Sensor Predictions Sparse Observations
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Defining the Observation-Based Loss

1. Utilise sparse measurements effectively.
2. Minimise error between model predictions and observations.
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Methodology
Residual-Based Loss
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Defining the Observation-Based Loss

1. Utilise knowledge of the physical system.
2. Minimise residual of network predictions.
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Physics-Informed Convolutional Neural Network
The Architecture

𝑢 𝛀𝑳, 𝑡 R𝑢(𝛀𝑯 𝑡)

𝑓#

∩ ℒ𝒪

ℒℛ

ℒ#

Kolmogorov flow has periodic boundary conditions.
We embed these in the network using periodic padding.

𝛀𝑯 ∩ 𝛀𝑳 = 𝛀𝑳
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Results – We can retrieve Navier Stokes solution.
Single Flow Field Prediction – Comparison with Naïve Upsampling.

True High-Resolution

Low Resolution Bicubic UpsamplingBilinear Upsampling

Network Upsampling
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Results – Looking at the Energy Spectrum
Recovering Underlying Physics / Anti-aliasing.

Recovering Underlying Physics

True High-Resolution

Low Resolution
Bicubic Upsampling

Bilinear Upsampling

Network Upsampling

• Upsampled results are subject to high 
degrees of aliasing

• Network predictions recover smaller 
scales of turbulence – a result of the 
physics-informed loss.
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Conclusions
What we accomplished & what’s next?

Please direct any questions to:
djk21@ic.ac.uk

Our accomplishments:

1. Produced physics-informed convolutional neural 
network capable of super-resolution.

2. Embedded knowledge about the boundary 
conditions in the network.

3. Demonstrated physically-principled results which 
generalize across the entire time-domain.

Looking at the effect of noisy low-resolution samples.
What’s next?:
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