Super-Resolution of Sparse Spatial-Observations of Navier Stokes

A Physics-Informed Convolutional Neural Network Approach

Daniel Kelshaw[†], Georgios Rigas[†], Luca Magri^{†‡}

[†]Department of Aeronautics, Imperial College London

[‡]Alan Turing Institute

Outline of Talk

Contents and Preprint

Contents

- 1. Overview of the problem.
- 2. Quick recap on dynamical systems and introduce the Kolmogorov flow.
- 3. Demonstrate our methodology.
- 4. Showcase results.
- 5. Conclusion.

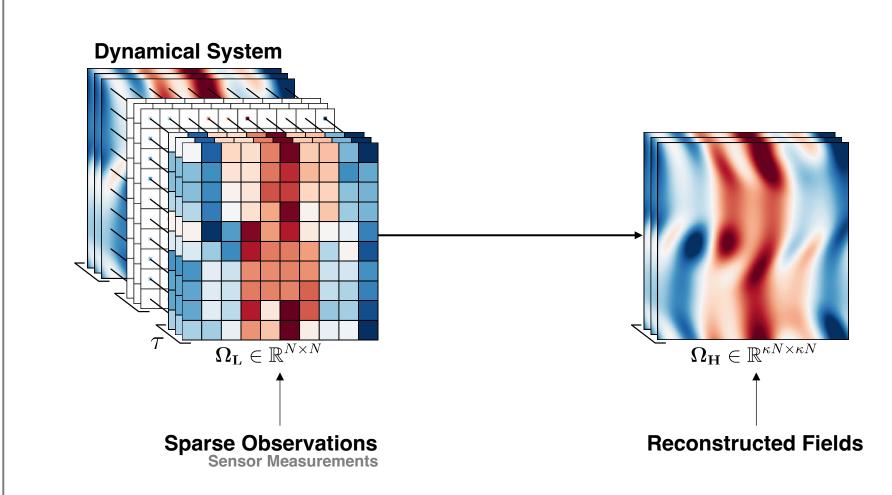
Preprint Available

Preprint available on arXiv

https://arxiv.org/abs/2210.17319

Code available on GitHub

https://github.com/magrilab/pisr


Physics >		Help Advanced Search	
	Fluid Dynamics	Download:	
Submitted on 31 Oct 2022 (v1), last revised 7 Nov 2022 (this version, v2)]		• PDF	
Physics	• Other formats		
Observations on Dynamical Systems		Current browse context:	
Daniel Kelshaw, Georgios Rigas, Luca Magri		physics.flu-dyn < prev next >	
In the absence of high-resolution samples, super-resolution of sparse observations on dynamical systems is a challenging problem with wide-reaching applications in experimental settings. We showcase the application of physics-informed convolutional neural networks for super-resolution of sparse observations on grids. Results are shown for the chaotic-turbulent Kolmogorov flow, demonstrating the potential of this method for resolving finer scales of turbulence when compared with classic interpolation methods, and thus effectively reconstructing missing physics.		ation Change to browse by: cs cs.LG physics	
		References & Citations NASA ADS	
	Published in NeurIPS 2022: Machine Learning and the Physical Sciences Workshop. Code at this https URL. arXiv a note: text overlap with arXiv:2210.16215	admin Google Scholar • Semantic Scholar	
Subjects: I	Fluid Dynamics (physics.flu-dyn); Machine Learning (cs.LG)	Export Bibtex Citation	
Cite as:	arXiv:2210.17319 [physics.flu-dyn] (or arXiv:2210.17319v2 [physics.flu-dyn] for this version)	Bookmark X 💀 🛱 🞆	
(
(https://doi.org/10.48550/arXiv.2210.17319 🚯	wise	
	https://doi.org/10.48550/arXiv.2210.17319 🚯		

D. Kelshaw, G. Rigas, and L. Magri, "Physics-Informed CNNs for Super-Resolution of Sparse Observations on Dynamical Systems," in *NeurIPS 2022 Workshop on Machine Learning and the Physical Sciences, 2022*, https://arxiv.org/abs/2210.16215

What Problem are we Tackling?

Super-resolution with no examples

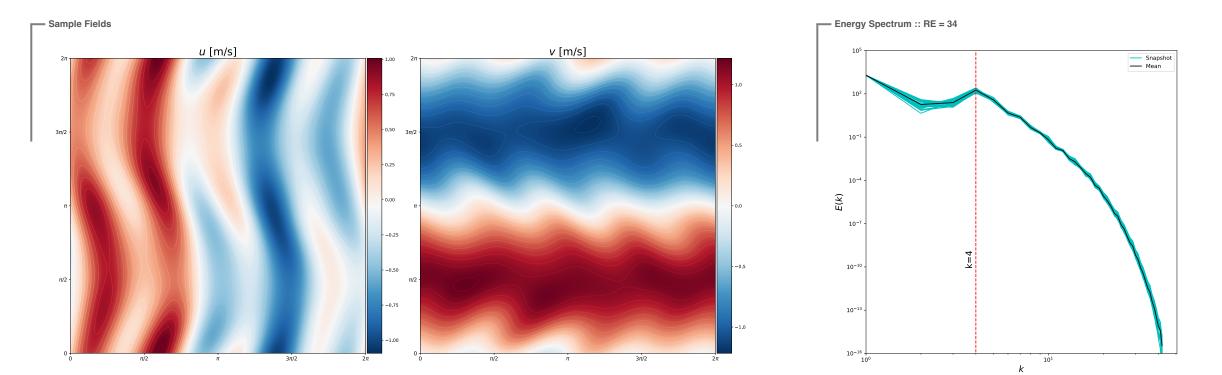
- The Super-Resolution Problem

How can we learn to super-resolve sparse observations with no high-resolution examples?

The Dynamical System

Kolmogorov Flow

Prototypical Dynamical System / Residual


$$\partial_t \boldsymbol{u} - \mathcal{N}(\boldsymbol{u}; \lambda) = 0$$

 $\mathcal{R}(\boldsymbol{u}, \lambda) \equiv \partial_t \boldsymbol{u} - \mathcal{N}(\boldsymbol{u}; \lambda)$

— The Kolmogorov Flow

Navier-Stokes: 2D Incompressible

Periodic spatial boundary conditions on $\Omega \in [0, 2\pi) \subset \mathbb{R}^2$ Periodic forcing in a single-direction.

 $\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\nabla p + \nu \Delta \boldsymbol{u} + g(\boldsymbol{x})$

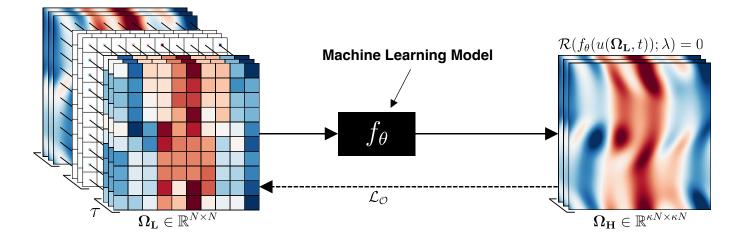


Our Approach for Super-Resolution

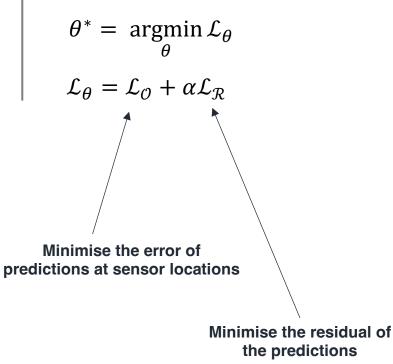
Physics-Informed Convolutional Neural Network

— Introducing the Model

Our goal is to find a function f_{θ} capable of mapping the low-resolution field to the high-resolution field. $f_{\theta}: u(\Omega_L, t) \rightarrow u(\Omega_H, t)$



Dynamical System


Methodology

Defining the Loss

$$f_{ heta}$$
: $u(\mathbf{\Omega}_L, t) o u(\mathbf{\Omega}_H, t)$

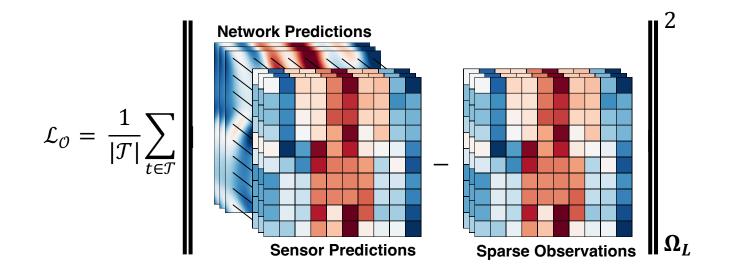
— Setting up the Optimisation Problem

More on the Residual Loss

Differentiable pseudospectral discretisation for the differential operator:

 $s{:}\,\hat{u}(\boldsymbol{k},t) \rightarrow \partial_t \hat{u}(\boldsymbol{k},t)$

- 1. Euler forward-difference to approximate derivative.
- 2. Compare with analytical derivative from the solver.

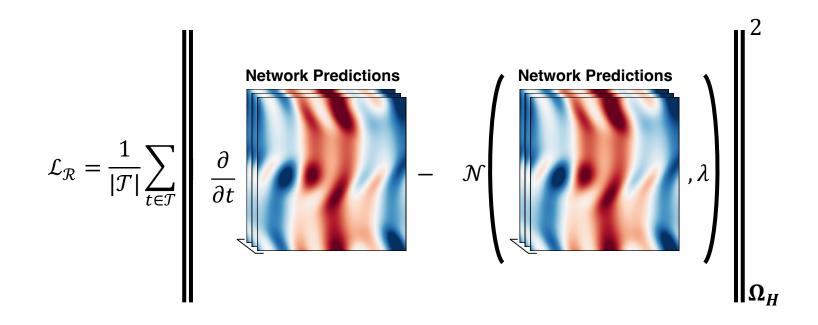

Key Point: This allows us to embed knowledge on the dynamical system in the loss *a priori*.

Methodology

Observation-Based Loss

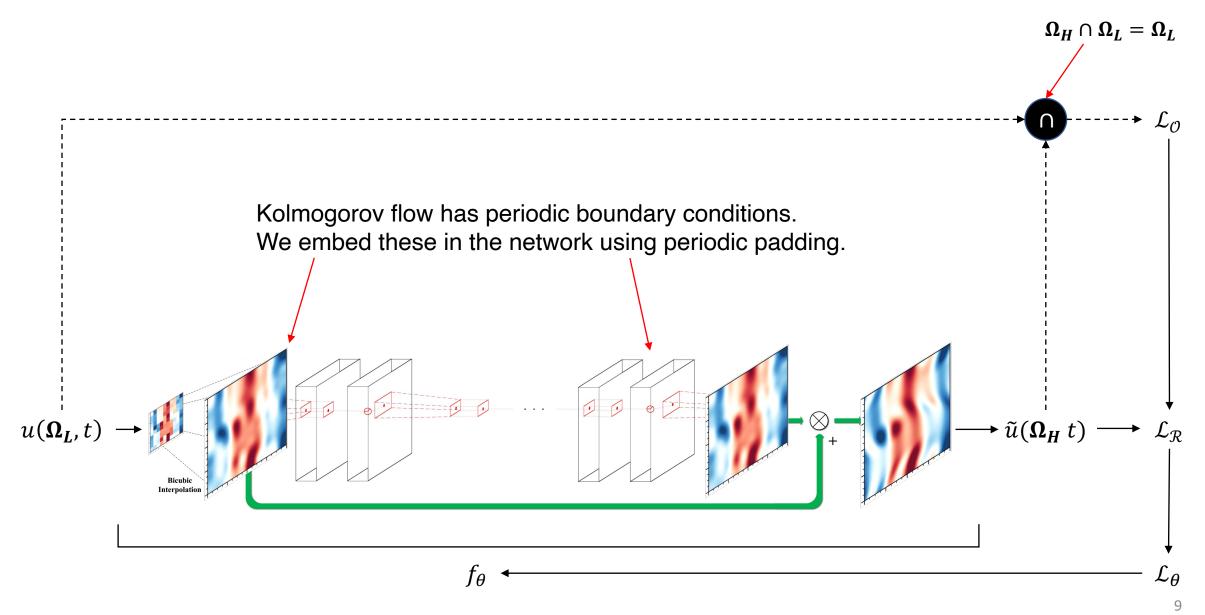
Defining the Observation-Based Loss

- 1. Utilise sparse measurements effectively.
- 2. Minimise error between model predictions and observations.

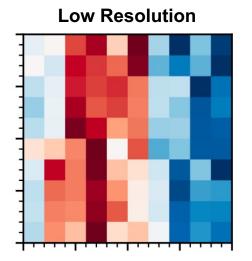


Methodology

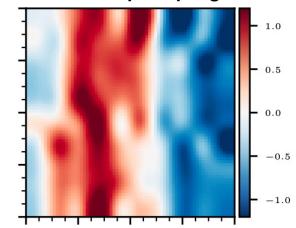
Residual-Based Loss


Defining the Observation-Based Loss

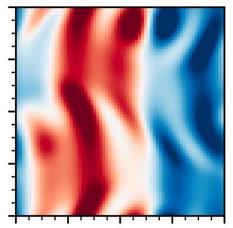
- 1. Utilise knowledge of the physical system.
- 2. Minimise residual of network predictions.


Physics-Informed Convolutional Neural Network

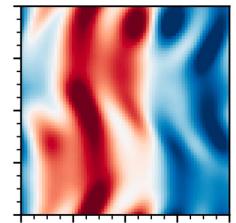
The Architecture


Results – We can retrieve Navier Stokes solution.

Single Flow Field Prediction – Comparison with Naïve Upsampling.

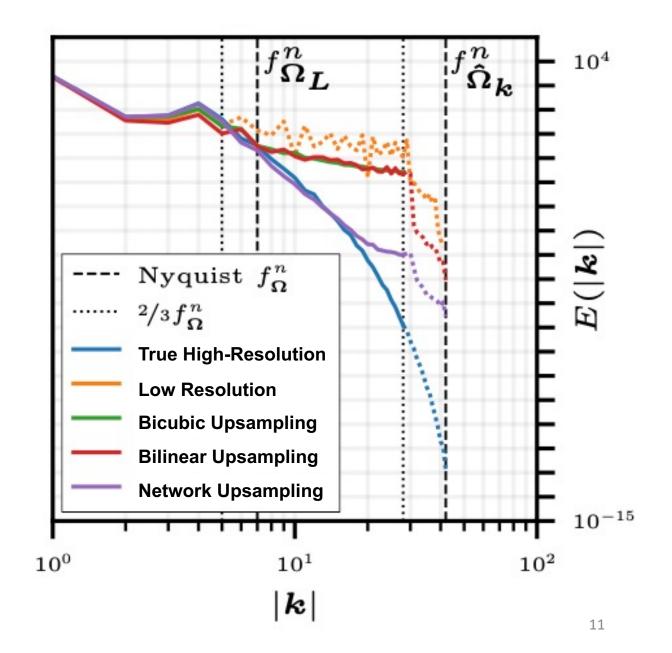


Bilinear Upsampling


Bicubic Upsampling

True High-Resolution

Network Upsampling



Results – Looking at the Energy Spectrum

Recovering Underlying Physics / Anti-aliasing.

Recovering Underlying Physics

- Upsampled results are subject to high degrees of aliasing
- Network predictions recover smaller scales of turbulence – a result of the physics-informed loss.

Conclusions

What we accomplished & what's next?

— Our accomplishments:

- 1. Produced physics-informed convolutional neural network capable of super-resolution.
- 2. Embedded knowledge about the boundary conditions in the network.
- 3. Demonstrated physically-principled results which generalize across the entire time-domain.

What's next?:

Looking at the effect of noisy low-resolution samples.

Please direct any questions to: djk21@ic.ac.uk

Preprint Available

Preprint available on arXiv

https://arxiv.org/abs/2210.17319

Code available on GitHub

https://github.com/magrilab/pisr

irXi	✔ > physics > arXiv:2210.17319	Search Help I Advance	All fields V Search
•	> Fluid Dynamics		Download:
Submitted on 31 Oct 2022 (v1), last revised 7 Nov 2022 (this version, v2)]			PDF Other formats (cc) BY
Physics-Informed CNNs for Super-Resolution of Sparse			
Observations on Dynamical Systems			
Daniel Kelshaw, Georgios Rigas, Luca Magri		Current browse context: physics.flu-dyn < prev next >	
a challe of phys Results	In the absence of high-resolution samples, super-resolution of sparse observations on dynamical systems is a challenging problem with wide-reaching applications in experimental settings. We showcase the application of physics-informed convolutional neural networks for super-resolution of sparse observations on grids. Results are shown for the chaotic-turbulent Kolmogorov flow, demonstrating the potential of this method for resolving finer scales of turbulence when compared with classic interpolation methods, and thus effectively		new recent 2210 Change to browse by: cs cs.LC physics
reconstructing inter scales of an balance when compared with classic interpolation methods, and reconstructing missing physics. Comments: Published in NeurIPS 2022: Machine Learning and the Physical Sciences Workshop. Code at this h note: text overlap with arXiv:2210.16215		,	References & Citations NASA ADS Google Scholar Semantic Scholar
Subjects:	Fluid Dynamics (physics.flu-dyn); Machine Learning (cs.LG)		Export Bibtex Citation
Cite as:	arXiv:2210.17319 [physics.flu-dyn]		Bookmark
	(or arXiv:2210.17319v2 [physics.flu-dyn] for this version)		
	https://doi.org/10.48550/arXiv.2210.17319 🚯		and the mise
Submiss	ion history		
From: Dan	iel Kelshaw [view email]		
[v1] Mon, 3	31 Oct 2022 13:36:18 UTC (608 KB)		
[v2] Mon.	7 Nov 2022 14:16:11 UTC (607 KB)		

D. Kelshaw, G. Rigas, and L. Magri, "Physics-Informed CNNs for Super-Resolution of Sparse Observations on Dynamical Systems," in *NeurIPS 2022 Workshop on Machine Learning and the Physical Sciences, 2022*, https://arxiv.org/abs/2210.16215