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Part · I
Bayesian inverse N–S problem for full signals
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Bayesian inverse N–S: a digital twin for flow imaging

u⋆ : noisy velocity image
u◦ : N–S reconstruction (digital twin)
u⋆ − Su◦ : filtered noise & artefacts
x : most likely (inferred) Navier–Stokes parameters

A. Kontogiannis et al., J. Fluid Mech., 944(A40), 2022.
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Denoising and improved wall-shear rate estimation

High SNR
PC-MRI images

∼5hrs

Low SNR
PC-MRI images

∼10min (×30 faster)

Even with high SNR data
wall shear stress is
badly approximated

▶ Addresses two major shortcomings of flow-MRI:
i. noise increases as spatial resolution increases
ii. partial volume effect (irregularities) near the boundaries

that hinder the accurate estimation of wall shear stresses.
6 / 23



Denoising and improved wall-shear rate estimation

High SNR
PC-MRI images

∼5hrs

Reconstructed low SNR
PC-MRI images

∼10min (×30 faster)

Reconstructed low SNR data
approximate better the

wall shear stress

▶ Addresses two major shortcomings of flow-MRI:
i. noise increases as spatial resolution increases
ii. partial volume effect (irregularities) near the boundaries

that hinder the accurate estimation of wall shear stresses.
7 / 23



Denoising and improved wall-shear rate estimation

High SNR
PC-MRI images

∼5hrs

Reconstructed low SNR
PC-MRI images

∼10min (×30 faster)

Reconstructed low SNR data
approximate better the

wall shear stress

▶ Addresses two major shortcomings of flow-MRI:
i. noise increases as spatial resolution increases
ii. partial volume effect (irregularities) near the boundaries

that hinder the accurate estimation of wall shear stresses.
8 / 23



(a) Synthetic data u⋆ (b) Our reconstruction u◦ (c) Ground truth u•

(d) TV-B λ/λ0 = 0.1 (e) TV-B λ/λ0 = 0.01 (f) TV-B λ/λ0 = 0.001

Figure: Streamlines in the simulated 2D model of an aortic aneurysm (Re = 500).
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(a) Zeroth iteration p0 (b) Our reconstruction p◦ (c) Ground truth p•

(d) Zeroth iteration (γw)0 (e) Our reconstruction γ◦
w (f) Ground truth γ•

w

Figure: Inferred wall shear stress and pressure.
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Part · II
Physics-informed compressed sensing (PICS)

for sparse signals
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Physics-informed compressed sensing for flow-MRI

s⋆ : sparsely-sampled k-space signal.
s◦ : reconstructed signal using a physics-aware digital twin.
u⋆ : reconstructed measured velocity.
u◦ : reconstructed modelled velocity.
Γ : most likely boundary of the object Ω.

A. Kontogiannis and M. Juniper, IEEE Trans. Image Process., 32:281-294, 2023. 12 / 23



Reconstruction for barcode sparse sampling with P∥

modelled

measured
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Shape inference, pressure, and wall shear stress

▶ Because PICS integrates a N–S model, it can furthermore infer the
hydrodynamic pressure and the wall shear stresses.

high SNR data

0

1

2

Figure: Inferred shape, ∂Ω◦, and velocity magnitude (first row) for 5%, 10% and
15% P⊙-sampling, and 100%-sampling.
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Part · III
Reconstruction of 3D aortic flow
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3D-printed physical model of an aortic arch

▶ Steady 3D flow-MRI experiments at Re ≃ 500, 1000, 1500
▶ Reconstruction of noisy data in the region of the aortic arch
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Numerical implementation

Cut-cell FEM (immersed boundary)

▶ Boundary is implicitly defined by the signed distance field
▶ MPI implementation in Python using PETSc

Based on Massing, A. et. al. Comput Methods Appl Mech Eng, 328:262–300, 2018.
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3D porous media flow reconstruction - work in progress

(a) Segmented geometry of a packed bed (b) Simulated flow through the packed bed

Figure: Demonstration of the parallel 3D Navier–Stokes (cut-cell finite element)
solver that we have developed in a packed bed geometry.
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Conclusions

Summary

▶ Formulated a Bayesian inverse N–S problem for the reconstr. of full MRV signals
▶ Extension to physics-informed compressed sensing (PICS) for sparse MRV signals

So what?
▶ Allows significant reductions in scanning time (up to ∼ x250 acceleration)
▶ Infers posterior mean and covariance of the geometry, pressure, WSS etc.
▶ Learns a digital twin of the MRV experiment paving the way to patient-specific

cardiovascular modelling
▶ Can simulate different flow conditions using the learned digital twin
▶ Offers high explanatory power (explains much from less) and interpretability

What’s next?
▶ Extend the implementation to periodic and unsteady flows
▶ Incorporate non-Newtonian fluid models and infer their parameters
▶ Apply algorithms to reconstruct flow-MRI data of in-vivo cardiovascular flows
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Thank you!

Questions?
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