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Challenges:

• Computational cost

• Uncertainties

Sagaut et al. 2013

Hierarchy of Turbulence Simulation Approaches

Introduction

Source: https://www.idealsimulations.co

m/resources/turbulence-models-in-cfd/ 1

Source: https://www.shutterstock.com/

Wall-bounded turbulent flows

Deck et al. 2014

https://www.idealsimulations.com/resources/turbulence-models-in-cfd/
https://www.idealsimulations.com/resources/turbulence-models-in-cfd/
https://www.shutterstock.com/


Multifidelity Models
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• Several simulations of a turbulent flow are required.

• Multifidelity Models (MFM): achieve high accuracy with

a given limited computational budget.

• We need a MFM that:

- is consistent with turbulence modeling hierarchy

- can handle uncertainties.

Outer-loop Problems

Surrogates Uncertainty Propagation Sensitivity Analysis Bayesian Optimization
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HC-MFM: Hierarchical MFM with Calibration

Goh et al. Technometrics, 55(4):501–512, 2013

Global Kernel Matrix

HC-MFM

Data samples from 

various fidelities

Bayesian Inference 

using MCMC methods

S. R., T. Mukha, P. Schlatter,

arXiv:2210.14790, 2022.



Application to a Toy Problem
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Fix HF data & increase LF data:

• More accurate predictions,

• More informative posterior for parameter.

Forrester et al. 2007:

4 HF, 10 LF 4 HF, 15 LF 4 HF, 20 LF



Polars for an Airfoil
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https://en.wikipedia.org/wiki/Stall_(fluid_dynamics)

https://en.wikipedia.org/wiki/Stall_(fluid_dynamics


Polars for an Airfoil: challenge
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Stall

The HC-MFM should capture the stall =>

Kernel of the model discrepancy is modified.

CL CD



Polars for an Airfoil
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Geometrical Uncertainties in Periodic-hill Flow

8

By Voet et al., 2021
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Posterior of k, RANS modeling parameter

HF: 5 DNS

LF: 125 RANS

Ref.: 9 DNS*

*DNS data: H. Xiao et al., Computers & Fluids, 200:104431, 2020

Geometrical Uncertainties in Periodic-hill Flow

Predictions by the HC-MFM



Geometrical Uncertainties in Periodic-hill Flow

Impact of the inference method
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MAP Estimator

(Maximum a-posteriori)

MCMC sampling

(Markov Chain Monte Carlo)

Bayes' formula for inverse problems



Conclusions

• Promising results by adapting the HC-MFM of Goh et al. 2013 to turbulent flow applications.

• HC-MFM is generative and can account for modeling and observational uncertainties.

• For fixed HF data, HC-MFM priotorizes the accuracy of the predictions over the calibration of 

fidelity-related parameters.

• Keeping HF data fixed and increasing the number of LF data improves the accuracy of the 

predictions and lead to more informative posteriors for parameters.

• Based on our analyses, adopting an MCMC method for Bayesian inference is essential as point 

estimators lead to inaccurate results.

• HC-MFM can be applied to other applications.
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Thank you!

https://doi.org/10.48550/arXiv.2210.14790
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