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Overview

 Turbulence modeling:

known facts, uncertainties, and the potential for machine learning
 Sparse Bayesian learning for data-driven turbulence modeling
 Generalization through model mixtures

e Conclusions and outlook




Motivation

® |ncreasing pressure for breakthrough designs: new fuels, extreme operating conditions
= Environmental constraints require drastically reduced energy consumption and carbon emissions

* Intensive use of high-fidelity Computational Fluid Dynamics (CFD) to explore uncharted designs or extreme
operating conditions = "virtual rig”




Motivation

= Flows of engineering interest: high Reynolds number
* Large range of scales
* Accurate numerical simulations require billions of degrees of freedom, huge computational cost
* Low-fidelity RANS (or lower) models not reliable for configurations off the beaten paths
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The closure problem

= Reynolds averaged Navier-Stokes (RANS) equations:
* Define a suitable averaging operator (modeling choice)

* Decompose field quantities into average and fluctuating parts

u=u+u'; p=p+p'
1
V-u=0 Tj—uu—Zk(bl]+35U)
ou \ b; = anisotropy tensor = must be modelled
a—+ u-Vu= ——Vp +V- (VVu— u'u’ k = turbulent kinetic energy
t p

Reynolds stresses

Reynolds stresses need a constitutive law: a

1. Look for a mathematical formulation (model

2. Look for closure coefficients (model




Kn own fa CtS [P. Spalart lectures, July 2022, NASA Turbulence modeling Symposium]

= Classical turbulence models are already “data-driven”, to some extent

* Transport-equation model ingredients:

1. Constitutive Relation: combination of turbulence “scales” and velocity gradient —

. o _ Decaying grid turbulence

2. Transport equations (imitating the exact equation for the Reynolds stresses)
o Production + Dissipation + Diffusion

3. Damping functions active in the viscous sublayer

4. Tuning coefficients (not all independent)

= Fine-tuned to capture a few “turbulence facts”

* Mostly the flat-plate boundary layer




Turbulence modelling uncertainties

Quest of the Holy Grail: the “universal” RANS model
= Model structure based on first principle

* Constraints: objectivity, symmetries, realizability

* “Exact” equations from high-order moments of NS

- 800-pound gorilla: the closure problem!

* End up with crude modeling assumptions

* Closure coefficients are not carved in stone!

Ce, = 1.92;1.68; 1.83...; best-fit to data: 1.77!

No universally accepted model, no universal
parameters, variable performance

Decay rate of Blind pressure coefficient predictions from
homogeneous various RANS models (lines) and
isotropic turbulence experiments (symbols).

6th AIAA Drag prediction workshop. 7
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Quest for the “universal” model

= Some degree of generality needed

I”

= Hand set “zonal” models not acceptable for industry
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The potential for machine learning High-fidelity databases  Domain knowledge

Machine learning of data-driven turbulence models

= General philosophy

* No « universal » model

. . . i Constraints s> <Jém
Customized models (“experts”) for flow classes

~

* Mostly formulated as a “correction” (data-driven augmentation)
1. Collect data m
2. Choose a functional basis @
3. Enforce physical constraints (whenever possible) _
earnin
4. Train against data
5. Validate for a test set y ﬁ
a
a
. » i
P @ a® o
NG 8 . a
~ o

ML-augmented modelxj) 9




Challenges

v
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= Large, but scarce and extremely costly data bases [4°°°

2000

= HiFi-CFD limited to low/moderate-Reynolds numbers s
—0

= Experimental databases: higher-Re, but noisy/incomplete

= ML out-of-sample performance?

= ML uncertainty quantification?
Transonic flow of a non-ideal gas (fluorocarbon PP11)
through a linear cascade, coarse LES, Re= 8x10%, 3x107
points, ~10°> CPUh (Hoarau et al., 2021)

LES domain

! g e 0 200 0.5 1.0 1.5 2.0 2.5 3.0 3.5 oy
0 100 200 300 400 -200 v
X [mm] [mm] Free-stream transition of a non-ideal gas boundary layer (Novec649 advanced,

ozone-friendly working fluid) around a turbine leading edge at Mach 0.9,

Time-resolved t hic PIV of i ible fI t a cylinder at
ime-resolved tomographic PIV of incompressible flow past a cylinder a Re,;;~11000, 2.15x10° points, CFL~5, ~105 CPUh (Bienner et al., 2022)

Re,=27000 (Scarano et al., 2022) 10




Strategy

Large, but scarce and extremely costly data bases
* Parsimonious approaches
HiFi-CFD limited to low/moderate-Reynolds numbers
Experimental databases: higher-Re, but noisy/incomplete
* CFD-in-the-loop training, data assimilation
Out-of-sample performance?
* Model mixtures

Uncertainty quantification?

» Stochastic Machine Learning

Bayesian Machine Learning

B

Rev’d Thomas Bayes (1702-1761)

L1L. ' An Effay towards folving a Problem in
the Doftrine of Chances. By the late Rev.
My. Bayes, F. R. . communicared by Mr.
Price, in a Letter to John Canton, 4. M.
F.R.S.

Dear Sir,

Read Dec. 23, 7 Now fend you an eflay which I have
1708 found among the papers of our de-

ceafed friend Mr. Bayes, and which, in my opinion, .

has great merit, and well deferves to be preferved.
Experimental philo(bp};y, you will find, is nearly in-
terefted in the fubject of it; and on this account there
feems to be particular reafon for thinking that a com-
munication of it to the Royal Society cannot be im-
Propes: ;

He had, you know, the honour of being a mem-
ber of that illuftrious Society, and was much eftecem-
ed by many in it as a very able mathematician. Inan
introduction which he has writ to this Effay, he fays,

-




Probabilistic modeling

= Express all forms of uncertainty and noise associated with the model via probability theory

= Law of inverse probability (Bayes’ rule) allows to infer unknown quantities, adapt models to
new observations, make predictions and learn from data

Prior Posterior
—3' Model ?/\
Posterior Observgtions
Model

Inference
12




Modeling framework

= Consider a model
y=M(x;0)

x=vector of model inputs; y=vector of model outputs;
0=vector of model parameters

= Choose a functional space for M

* To fix ideas, we focus on generalized linear models
M
M(x;0) = Z 0., P, (X)
m=1

* &, (x)=basis functions (e.g. radial-basis functions)

= Consider a set of N data, we may write the design matrix:

O;(%1) ... Py(xq)
P =
q)l(XN) CDM(XN) NXM

overfitting

Just right!

13




Promises and challenges... Bayesian Machine Learning Application to turbulence modeling Conclusions & Outlook

Bayesian inference

= Bayes’rule allows to do inference about hypothesis given some data (observations)

= § — parameters

—— posterior
" Y — observations Likelihood Prior e
Posterior l l
l p(Y,0|M) p(Y|6,M)p(0)
p(B|Y,M) = =
p(Y|M) p(Y|M)

L _T

Evidence

* Prior: summarizes hypothesis before we observe data
* Likelihood: probability of observing the data if the hypothesis is true

* Evidence or « Marginal likelihood »: probability that randomly selected
parameters from the prior would generate the data

* Posterior: hypothesis updated after observing the data

14




Bayesian regression vs LMS

= Regression of noisy data:
Y, =M(X,;0)+e,

* e, i.i.d. Gaussian noise with variance o2
p(enlaz) = N (0, 02)

= The maximum likelihood estimate of O corresponds to minimizing the MSE to the data

Probability density function of Prior

¥
|
b

+— Gaussian Prior
—e— Laplace Prior

= The maximum a posteriori estimate of @ corresponds to:

 Gaussian prior = LMS+ridge-type regularization with A = 2«
* Laplace prior > LMS+LASSO-type regularization

r\w)

More peaked at 0 = sparser

15




So Bayesian regression equivalent to LMS?

= No: now we have posteriors!

= Posterior predictive distribution (P.P.D.):

p(y|lY,M) = f p(y|Y,0,a,0%, M)p(0, a,0?|Y)d0dado?

y=model output at a new input x

= Prediction with quantified uncertainty

A A

Yn = M(xn; 9)
pyIY, M)

YMmapr

v

Yn = M(xn; 0)

v

16




Bayesian Ockham’s razor and model comparison

= Automatic model selection through p(Y|M)

* Compare model classes, e.g. M and M’, using posterior model probabilities
p(Y|M)P(M) ) p(YIM")P(M')
P(M|Y) = ; P(M'|Y) =
M= P

* Too simple classes unlikely to generate the data set

* Too complex can generate many possible data sets = unlikely to generate one particular data set at random

P(Y|M)

\ just right"
From Z. Ghahramani J L

= — P
D

All possible data sets of size n

17




Pros and cons of Bayesian approach

" Pros

© Expert knowledge or preferences of the models easily incorporated into the model by prior distribution.

© Probabilistic outputs with confidence intervals
© Sparsity promoting via automatic implementation of « Ockham’s razor »

= Cons

® Analytically intractable multidimensional integrals

Model evidence: p(Y|M) = [ p(Y|0,M)p(0|a)p(c?)p(a)dOdads?

Posterior predictive distribution: p(y|Y,M) = [ p(y|Y,0,a,c%)p(0,a, 6*|Y, M)dOdads?

18




Sparse Bayesian Learning [tipping 2001]

Redundant dictionary of functions

Gaussian priors with individual precisions a,,
Objective: find p(0, a, a2|Y) = p(0]Y, a, 0%) x p(a, 0?|Y)

Single a aq,a;

| —

Analytically computable Approximate

Do iterative procedure:

1.

2.

Initialise prior hyperparameters a, o2

Posterior maximization: analytically update the optimal weight vector 8 by maximizing the posterior of weights

p(0]Y, a, 62) given a, o2

Evidence maximization: update a, o 2by approximately maximizing the evidence p(Y|a, 62) >
_ )

& = Qyap,0° = Ojyap

if a,, = o0, the component is discarded (automatic selection)

Loop steps (2) and (3) until converged

19




Data-driven discovery of turbulence models
[Schmelzer et al., 2020]

SpaRTA = Sparse Regression of Turbulent-stress Anisotropy

= Start with linear eddy viscosity model (here, Menter’s k — w SST)

1 v

+ transport equations for k and w

» |nternal additive corrections of Reynolds stress anisotropy (biAj) and turbulent transport equations (R):

v
by = ——

Y Sij + b} L S S D P 4 Pyn+Pyg+D+T
ij k lj ] w w,A w,R

Dt Dt

= Learn biAj and R from high-fidelity data
SPARSE SYMBOLIC IDENTIFICATION

Open-box (symbolic identification) = dictionary of explicit operators

20




Data-driven discovery of turbulence models

Ansatz for biAj [inspired from Pope, JFM, 1975]:

blAj = z al(11,12;13114r15)Tilj
l=1,..,10

Ansatz for R: R = Zkbf}- ZE
Xj

Dictionary of function libraries B; = [fo1, fir, - fni] With fir = fra (14, ..., I5)
biDj=CD-@,:| (o=AR)

Co= BlTiﬁ- U B,T; U+ UByg Tl-j0 —> candidate tensor functions

O,=06, U0, U..U060,;, 2 vector of coefficients

Find ® by solving a regularized regression problem so that most coefficients are zero

OUTCOME: sparse data-driven Explicit Algebraic Reynolds-Stress Model (EARSM)

21




SBL-Spa RTA [Cherroud et al., 2022]

= Find p(G)D, Q, 02|b{-:'j) using the SBL algorithm

* Select functions in Cgdictionary and infer posteriors Ref | Abr. Data

D, | ZPG | DNS of turbulent boundary layer, 670 < Rey < 4060!

D, | FDC DNS of turbulent channel flow, 180 < Re, < 5902

Ds; | ANSJ PIV of near sonic axisymmetric jet 3
D, | APG LES of adverse pressure-gradient TBL 4
Rey <4000, B = 4, 5 different pressure gradients
Ds | SEP LES of Periodic Hills at Re=10595 >

DNS of converging-diverging channel at Re=13600 ©
LES of curved backward facing step at Re = 13700 7

Example of discovered model:

MG = [[5.21 H0.0173)]T@ | £0.0348
MG = [[o.681{} 0.02)r® +{0.0318
f i 1

E[6] || std[o] o

FDC : the discovered model correction is 0!




SBL-SpaRTA
= Curved backward-facing step flow at Re=13700

3.0

2.5 1

Hi-Fi reference P
--- k —wSST
__ SBL

+ 30

y/H

0.001 A

0.000 A

-0.001 A

-0.002 -

Twall

-0.003 4

—0.004 -

10

15
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Mixtures of experts

How good is our model at predicting another data sets?

Large data sets: combining models trained on subsets better than single model trained over all data

Out of sample predictions: uncertainty on which model (among those at hand) is better

Generate hypermodels by combining component models through some gating functions (regional weights)

Outputw Mixture of experts

/ A»\\\‘
L )
AT
e ] .
P :
e \\\
R Expert 2 Expert 3 Gating
\ ! /,,1 G
\\\ ///W
S |
\\‘,/,
Input

24




Spatial model aggregation (X-MA) of turbulence models (g zordo et al., 2021]

= Consider a set of K competing models M = {M,, M,, ..., Mg}

= « Hypermodel »: My,,,(x,0) = YK _ WMy (x; 0), with
wi = Wi (X) = wi(n(X))

= Regress Wy (n(x)|Y) from data as a function of features > Random Forests

* Predict local model weights for a new case wy ((x)|Y) and use them to aggregate individual model predictions

Feature Description Formula Feature Description Formula
! . L [[€2[]* — [IS[I* - . vr
m Normalized @ criterion e 76 Viscosity ratio —_—
|22 + [|S]|2 100v + v
_ [oP opP
_ . k Ratio of pressure \;‘ dx; 0z;
2 Turbulence intensity 050U + F n normal stresses to — —
L v normal shear stresses [ opP ol “_5/'("'1\-
\f Oz Ox;j oxy.
OUy
I Non-orthogonality U,U, [
Turbulent Reynolds . [ VEA T Koz,
n3 - min | = ,2 7% marker between velocity
2 50 X i / 7. T T arr
and its gradient [28] U U.U f ‘U Um r, 0Us
| n n T, m . ] «
\; Ox; Ox; T 0z
— P U ok
Pressure gradient o Oz, Ratio of convection to O
7 . e T)c . 7
“ along streamline [oP oP apP o production of k [ol;u)Sit| + U, ok
[ rU: + U uupSii 15—
\ 0z; 0z; "' |7 Oxy ' 9z
Ratio of turbulent IS||k Ratio of total Reynolds P27
5 time scale to mean T n10 stresses to normal #
strain time scale il Reynolds stresses ™ |“l“/|
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NASA Turbulence Modeling Testing Challenge

= Application to Test Case 1 2DZP: 2D Zero Pressure Gradient Flat Plate
* Show (1) Cfvs. x and (2) u+ vs. log(y+) at x=0.97; compare with theory

Flat Plate Boundary Conditions,
- M=0.2, Re_ = 5 million (L=1), T, = 540 R

i farfield Riernann BC
> B —~— _?[.’”_I?ref= 1.02828‘ P"P _1 O -
0.5 VT = 1.008, R
i 1 qugnnly from interior forlohr?lr[z[ueanno[:[les
- symmetry adiabatic solid wall
I — l -l l
0 :' =
i start of plate at x=0
| S TN TN TR TN AN TN SRS SO WO (N NN SN N SN S S S S N S S S S N |
-0.5 0 0.5 1 1.5 2
X
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NASA Turbulence Modeling Testing Challenge

U+

— K — W SST
o Coles

25 1 == X-MA

20
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0.35 e ———eeeee
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+
y
=— szgtbl W chan w— W APG — Wjet — Wsep

— kK — w SST
o White 6-121
0.010 - = X-MA
0.008
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X
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c
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Accurate prediction of the 2DZP
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NASA Turbulence Modeling Testing Challenge

= Application to Test Case 3 ASJ: Axisymmetric Subsonic Jet

ARN1 Axisymmetric Jet
M =0.01, T =530R, Fiemf,b‘lsed on =601
ressniiom  ref conditions in freestream; r, =jet radius
conditions rotation
adiabatic solid wall e
(nozzle surface) about
e X-axis
st | = .
= PP =1,
Bew & other
P/P,.=1.19671 B2 = =S
/T ::=1-° iy §§ % i:Itt,gr‘ior
x=0
Jet exit: /
nondim radius r_=1 i
M,, approx 0.51 et Axis of symmetry
~—
* y=0
x=80r,,
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Uaxis
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NASA Turbulence Modeling Testing Challenge

= Application to Test Case 3 ASJ: Axisymmetric Subsonic Jet

Kk — W SST W
1.0 ~
0.8 A
0.6 1
=
0.4 +
0.2 1
0.0 7 T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
N E. 2
D)et
= szgtb/ = Wchan = WAPG — Wjet _ WsepJ

0.0

T
20.0

X-MA puts higher weight on the ‘jet model’ in the far jet region
y+
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NASA Turbulence Modeling Testing Challenge

= Application to Test Case 4 2DWMH: 2D NASA Wall-Mounted Hump Separated Flow Validation Case

0.8

0.6

0.2

-0.2

NASA Wall-mounted hump case (with plenum)
M_=0.1, Re_=936,000
T.=537R

0.4}

] /

Inviscid (slip) wall

m Pt/Pref=1.007
- -—— Tt/ Tref=1.002
- 1 quantity from interior

i P/Pref=0.99962
i other quantities —»
from interior

\ =

-_ Adiabatic solid walls Inviscid (slip) wall

! | ! ! ! ! 1 ! ] ] ] 1 ]

0 0.5 1

v+
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NASA Turbulence Modeling Testing Challenge

0.4 — k—w SST . m— Kk — W SST
o Exp o Exp
0.006 1
0.004 1
@)
0.002 1
0.000 A1 . « .
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\ improvement over the
—0125 0.60 0.'25 0‘.I’>0 . 0.'75 1.60 1"25 1.I50 . basellne
& &
0.8 0.8 1
0.6 - 0.6 4
g 0.4 g 0.4 4
0.2 0.2 1
0.0 : : : : : . : . 0.0 . . . . : . . :
-0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X X
S <

m— Wipgth] === Wchapn === WppG === Wjer = WSEpJ m— Wopgthl === Wchan === WapG === Wjet === Wsep 31




Application to the NACA 65 V103 cascade

= Experts: Spalart-Allmaras, k-€, k-w and K-l models of turbulence

= Training: synthetic total pressure data generated from k-kl EARSM model for S1,S3 and S4; prediction for S2

32




Prediction of selected Qols for an unseen scenario

= Expectancy and standard deviation computed from local probability mass distribution (model weights)

Total Pressure loss in the wake Velocity profile at suction side
0.07 "
35 x 10
0.06- // Py
0.05 L
(en
Yn 0.04 o
l - A
0.03 4 - o*———
: ——
0 0.1 0.2 [
0.02 e
0.011 . =
_015 T T T 0.00_ T T T T
0.1 0.0 0.2 0.4 0.6 0.8 01 00 0.2 04 0.6 0.8 1.0 1.1
Total Pressure Loss Norm. Tangential Velocity

X-MA consistently favors the best model at each prediction point

33




Conclusions

= Bayesian data-driven turbulence framework
* Sparse, interpretable and stochastic models
* Generalization through model averaging

* Delivers uncertainty estimates

= Encouraging proof-of-concept obtained for data-driven turbulence modeling

* application to the NASA turbulence modeling testing challenge

= Future work:
* Further investigate SBL and other Bayesian machine learning algorithms
* Optimal choice of features?
* 3D flows?

* How to perform efficient model-in-the-loop learning?

34
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Advertizing

" Two postdoc positions and a PhD position available in my LearnFluidS group:
* Physics-constrained deep network augmentation of turbulence models
* Model-consistent Bayesian learning of turbulence models from sparse data

= One PhD position:

* Machine-learning-assisted wall-modelled large eddy simulations of transitional flows in
turbomachinery

Contact: paola.cinnella@sorbonne-universite.fr
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Some properties of Bayesian inference

= Asymptotic certainty:
* Under suitable assumption on the prior, lim p(0]Y) = 6(0 — 0,.,.)
n—oo
* If the data cannot be captured by the model for any \theta (unrealizable case), lim p(0]Y) = 6(0 — ﬁ), with 0
n—oo

minimizing the distance between the predictive posterior and the true distribution in the Kullbach-Leibler norm

» Asymtotic consensus:

* Given two different priors of the parameters, the corresponding posteriors tend to converge asn — o

38




Data-augmented turbulence modeling

= Two training strategies
* A priori (“CFD-free”) training
+  © Inexpensive (manipulate analytical expressions)
* ® Requires high-fidelity, low noise data for turbulent quantities
* @ Does not warrant model consistency

*  ® May lead to non robust models and conditioning problems

* Model-in-the-loop (“CFD-driven”) training
«  © May use virtually any data (mean flow and turbulent quantities)
*  © Model-consistent
*  © Produces numerically robust models

* ® Requires the solution of a costly multidimensional optimization
problem

Training Functional

data for b;

Turbulence model
b,‘j=b,'j(F1,F2,...Fn)

CFD flow solver

Output Qols

Training data
for observed

basis

A priori
training

Validation

Functional

basis

Qol

Turbulence model
bU=bU (Fl,Fz,...Fn)

Output Qols

CFD-driven
training

Validation
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Bayesian regression vs LMS

= Regression of noisy data:
Yo, = M(X,,;0) + e,
* e, modelled as zero mean, independent and identically distributed Gaussian noise with variance ¢
p(eqlo?) = NV(0,0%)
* Then:
p(YnIxn; 0, 0-2) = N(M(Xn; 9): 02)
and

2
- (_ (Y, — M(X,,, 8)) )

N N
2y — 2N —
p(¥16,02) = HN(M(Xn, 0),0%) = H — =

* The maximum likelihood estimate of @ = arg meax p(Y|0,52), or
min of the negative log-likelihood:

N

1 1 2
—log(p(Y10,02)) = 2—log(2n02) + 57 (Y, — M(X,,9))

n=1

Which corresponds to minimizing the MSE to the data




Probablllty densny funchon of Prior

Gau55|an Prior
Laplace Prior

25

Bayesian regularization via priors

= A prior expresses the degree of belief about values parameters can take:

* E.g.: zero mean Gaussian prior with a the inverse variance (hyperparameter) 5

0la) ﬁ \[ = ( o2 ) | i \

a) = —exp|(— —

’ L N2m PAT 20
m= "‘;({

* Encodes the belief that parameters are mostly zero (low complexity model)

-0.8 -0.6 04 02 0 0.2
w

Combine beliefs about the prior and the likelihood via Bayes’ rule => posterior'

- (_ (Y, — M(X,,,9)) ) \/_exp B _92)

202

N
1
p(8lY,a,0%) « p(Y|6,0*)p(8la) = 1_[
i V2mo?

Maximum A Posteriori (MAP) approximation (0 most probable a posteriori):

N M
_ 1 2«
MAP(8) = arg min (FZ(Yn —M(Xn,0))" + Z_Z 912n>
n:

m=1

2

Gaussian prior = ridge-type regularization with A = c“«a

Laplace prior = LASSO-type regularization

More peaked at 0 = sparser
41




