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Overview

• Turbulence modeling: 
known facts, uncertainties, and the potential for machine learning

• Sparse Bayesian learning for data-driven turbulence modeling

• Generalization through model mixtures

• Conclusions and outlook



Motivation
§ Increasing pressure for breakthrough designs: new fuels, extreme operating conditions

§ Environmental constraints require drastically reduced energy consumption and carbon emissions

§ Intensive use of high-fidelity Computational Fluid Dynamics (CFD) to explore uncharted designs or extreme 
operating conditions à ”virtual rig”
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https://www.airbus.com/en/innovation/zero-emission/



Motivation
§ Flows of engineering interest: high Reynolds number

• Large range of scales
• Accurate numerical simulations require billions of degrees of freedom, huge computational cost
• Low-fidelity RANS (or lower) models not reliable for configurations off the beaten paths
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§ Reynolds averaged Navier-Stokes (RANS) equations:
• Define a suitable averaging operator (modeling choice)

• Decompose field quantities into average and fluctuating parts
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Reynolds stresses need a constitutive law: a turbulence model
1. Look for a mathematical formulation (model structure)
2. Look for closure coefficients (model parameters)

Reynolds stresses

The closure problem

𝜏!" = 𝑢!#𝑢"# = 2𝑘 𝑏!" +
1
3𝛿!"

bij = anisotropy tensor à must be modelled
k = turbulent kinetic energy

𝜏 = 𝜏 #𝑢, �̅�; 𝜃



Known facts [P. Spalart lectures, July 2022, NASA Turbulence modeling Symposium]

§ Classical turbulence models are already “data-driven”, to some extent

• Transport-equation model ingredients:

1. Constitutive Relation: combination of turbulence “scales” and velocity gradient 

2. Transport equations (imitating the exact equation for the Reynolds stresses)

o Production + Dissipation + Diffusion

3. Damping functions active in the viscous sublayer

4. Tuning coefficients (not all independent)

§ Fine-tuned to capture a few “turbulence facts” 

• Mostly the flat-plate boundary layer
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Decaying grid turbulence

Free shear

Wall-bounded



Quest of the Holy Grail: the “universal” RANS model

§ Model structure based on first principle

• Constraints: objectivity, symmetries, realizability

• “Exact” equations from high-order moments of NS

à 800-pound gorilla: the closure problem!

• End up with crude modeling assumptions

• Closure coefficients are not carved in stone!

𝐶$% = 1.92; 1.68; 1.83. . . ; best-fit to data: 1.77!

No universally accepted model,  no universal 
parameters, variable performance
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Turbulence modelling uncertainties

Blind pressure coefficient predictions from
various RANS models (lines) and 
experiments (symbols).  
6th AIAA Drag prediction workshop.

Decay rate of 
homogeneous
isotropic turbulence



Quest for the “universal” model
§ Some degree of generality needed

§ Hand set “zonal” models not acceptable for industry
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[from P. Spalart lectures, July 2022, NASA Turbulence modeling Symposium]



The potential for machine learning
Machine learning of data-driven turbulence models

§ General philosophy
• No « universal » model
• Customized models (“experts”) for flow classes

• Mostly formulated as a “correction” (data-driven augmentation)
1. Collect data

2. Choose a functional basis

3. Enforce physical constraints (whenever possible)

4. Train against data

5. Validate for a test set
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High-fidelity databases Domain knowledge

Constraints

Learning

ML-augmented model



Challenges
§ Large, but scarce and extremely costly data bases

§ HiFi-CFD limited to low/moderate-Reynolds numbers
§ Experimental databases: higher-Re, but noisy/incomplete

§ ML out-of-sample performance?
§ ML uncertainty quantification?
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Free-stream transition of a non-ideal gas boundary layer (Novec649 advanced, 
ozone-friendly working fluid) around a turbine leading edge at Mach 0.9, 
ReL11~11000, 2.15x109 points, CFL~5, ~106 CPUh (Bienner et al., 2022)

Transonic flow of a non-ideal gas (fluorocarbon PP11) 
through a linear cascade, coarse LES, Re= 8x105, 3x107

points, ~105 CPUh (Hoarau et al., 2021)

Time-resolved tomographic PIV of incompressible flow past a cylinder at 
ReD=27000 (Scarano et al., 2022)



Strategy

§ Large, but scarce and extremely costly data bases
• Parsimonious approaches

§ HiFi-CFD limited to low/moderate-Reynolds numbers
§ Experimental databases: higher-Re, but noisy/incomplete

• CFD-in-the-loop training, data assimilation

§ Out-of-sample performance?
• Model mixtures

§ Uncertainty quantification?
• Stochastic Machine Learning
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Bayesian Machine Learning

Rev’d Thomas Bayes (1702-1761)



Probabilistic modeling

§ Express all forms of uncertainty and noise associated with the model via probability theory

§ Law of inverse probability (Bayes’ rule) allows to infer unknown quantities, adapt models to 
new observations, make predictions and learn from data
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Observations

PosteriorPrior

Posterior

Inference



Modeling framework

§ Consider a model
𝐲 = 𝑀(𝐱; 𝛉)

𝐱=vector of model inputs; 𝐲=vector of model outputs; 
𝛉=vector of model parameters

§ Choose a functional space for 𝑀
• To fix ideas, we focus on generalized linear models

𝑀 𝐱; 𝛉 = &
!"#

$

𝜃!Φ!(𝐱)

• Φ!(𝐱)=basis functions (e.g. radial-basis functions)

§ Consider a set of 𝑁 data, we may write the design matrix:

𝚽 =
Φ&(𝐱&) . . . Φ'(𝐱&)
… ⋱ …

Φ&(𝐱() … Φ'(𝐱() (×'
13



Bayesian inference
§ Bayes’rule allows to do inference about hypothesis given some data (observations)

§ 𝜃 → parameters

§ 𝐘 → observations

• Prior: summarizes hypothesis before we observe data

• Likelihood: probability of observing the data if the hypothesis is true

• Evidence or « Marginal likelihood »: probability that randomly selected
parameters from the prior would generate the data

• Posterior: hypothesis updated after observing the data
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𝑝 𝛉 𝐘,𝑀 =
𝑝 𝐘, 𝛉|𝑀
𝑝 𝐘|𝑀

=
𝑝 𝐘 𝛉,𝑀 𝑝 𝛉

𝑝 𝐘|𝑀

Posterior
Likelihood Prior

Evidence

Promises and challenges… Bayesian Machine Learning Application to turbulence modeling Conclusions & Outlook



Bayesian regression vs LMS
§ Regression of noisy data:

𝑌* = 𝑀 𝑋*; 𝛉 + 𝑒*
• 𝑒% i.i.d. Gaussian noise with variance 𝜎&

𝑝 𝑒% 𝜎& = 𝒩(0, 𝜎&)

§ The maximum likelihood estimate of 𝛉 corresponds to minimizing the MSE to the data

§ The maximum a posteriori estimate of 𝛉 corresponds to:
• Gaussian prior à LMS+ridge-type regularization with 𝜆 = 𝜎!𝛼
• Laplace prior à LMS+LASSO-type regularization

More peaked at 0 à sparser
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So Bayesian regression equivalent to LMS?
§ No: now we have posteriors!

§ Posterior predictive distribution (P.P.D.):

𝑝 𝐲|𝐘,𝑀 = E𝑝(𝐲|𝐘, 𝛉, 𝛼, 𝜎%, 𝑀)𝑝 𝛉, 𝛼, 𝜎% 𝐘 𝑑𝛉𝑑𝛼𝑑𝜎%

𝐲=model output at a new input 𝐱

§ Prediction with quantified uncertainty
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𝑝 𝐲|𝐘,𝑀

𝑝
𝛉
𝐘,
𝑀

𝑦% = 𝑀 𝑥%; 𝛉

𝛉 𝑝
𝛉
𝐘,
𝑀

𝑦% = 𝑀 𝑥%; 𝛉

𝐲𝐌𝐀𝐏

𝛉𝐌𝐀𝐏
𝛉



Bayesian Ockham’s razor and model comparison

§ Automatic model selection through 𝑝 𝐘|𝑀
• Compare model classes, e.g. M and M’, using posterior model probabilities

𝑃 𝑀|𝐘 =
𝑝 𝐘|𝑀 𝑃 𝑀

𝑝 𝐘 ; 𝑃 𝑀′|𝐘 =
𝑝 𝐘|𝑀′ 𝑃 𝑀′

𝑝 𝐘
• Too simple classes unlikely to generate the data set
• Too complex can generate many possible data sets à unlikely to generate one particular data set at random
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From Z. Ghahramani

𝑃
(𝑌
|𝑀
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Pros and cons of Bayesian approach

§ Pros
☺ Expert knowledge or preferences of the models easily incorporated into the model by prior distribu[on.
☺ Probabilis[c outputs with confidence intervals
☺ Sparsity promo[ng via automa[c implementa[on of « Ockham’s razor »

§ Cons
☹ Analytically intractable multidimensional integrals
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Model evidence: 𝑝 𝐘|𝑀 = ∫𝑝 𝐘 𝛉,𝑀 𝑝 𝛉|𝛼 𝑝 𝜎7 𝑝 𝛼 𝑑𝛉𝑑𝛼𝑑𝜎7

Posterior predictive distribution: 𝑝 𝐲|𝐘,𝑀 = ∫𝑝(𝐲|𝐘, 𝛉, 𝛼, 𝜎7)𝑝 𝛉, 𝛼, 𝜎7 𝐘,𝑀 𝑑𝛉𝑑𝛼𝑑𝜎7



Sparse Bayesian Learning [Tipping 2001]

§ Redundant dictionary of functions

§ Gaussian priors with individual precisions 𝛼+
§ Objective: find 𝑝 𝛉, 𝛂, 𝜎% 𝐘 = 𝑝 𝛉 𝐘, 𝛂, 𝜎%

89:;<=>?:;;< ?@ABC=:D;E

× 𝑝 𝛂, 𝜎% 𝐘

8BBF@G>A:=E
§ Do iterative procedure:

1. Initialise prior hyperparameters 𝛂, 𝜎&

2. Posterior maximization: analytically update the optimal weight vector 𝛉 by maximizing the posterior of weights

𝑝 𝛉 𝐘, 𝛂, 𝜎& given 𝛂, 𝜎&

3. Evidence maximization: update 𝛂, 𝜎&by approximately maximizing the evidence 𝑝 𝐘 𝛂, 𝜎& à

𝜶 = 𝛂$*+ , 𝜎& = 𝜎$*+&

if 𝛼! → ∞, the component is discarded (automatic selection)

4. Loop steps (2) and (3) until converged
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Single 𝛼 𝛼# , 𝛼&



Data-driven discovery of turbulence models
[Schmelzer et al., 2020]

SpaRTA = Sparse Regression of Turbulent-stress Anisotropy

§ Start with linear eddy viscosity model (here, Menter’s 𝑘 − 𝜔 SST)

+ transport equations for 𝑘 and 𝜔

§ Internal additive corrections of Reynolds stress anisotropy (𝑏!", ) and turbulent transport equations (𝑅):

§ Learn 𝒃𝒊𝒋𝚫 and 𝑹 from high-fidelity data

SPARSE SYMBOLIC IDENTIFICATION
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𝐷𝑘
𝐷𝑡

= 𝑃 + 𝑃, + 𝐷 + 𝑇 + 𝑅𝑏-. = −
𝜈/
𝑘
𝑆-. + 𝑏-.

, 𝐷𝜔
𝐷𝑡

= 𝑃0 + 𝑃0,, + 𝑃0,2 + 𝐷 + 𝑇

𝜏-. = 2𝑘 𝑏-. +
1
3
𝛿-. ; 𝑏-. = −

𝜈/
𝑘
𝑆-. ; 𝜈/ = 𝑓(𝑘, 𝜔)

Open-box (symbolic identification) à dictionary of explicit operators



§ Ansatz for 𝑏!", [inspired from Pope, JFM, 1975]:

𝑏-.
, = &

3"#,…,#5

𝛼3 𝐼# , 𝐼& , 𝐼6 , 𝐼7 , 𝐼8 𝑇-.
3

§ Ansatz for 𝑅: 𝑅 = 2𝑘𝑏!"0
1239
14:

§ Dictionary of function libraries ℬ5 = [𝑓65, 𝑓&5, … 𝑓(5] with 𝑓75 = 𝑓75(𝐼&, … , 𝐼8)

𝑏!"□ = 𝐂□ ⋅ 𝚯□ □ = Δ, 𝑅

𝐂□= ℬ#𝑇-.
# ⊔ ℬ&𝑇-.

& ⊔ ⋯⊔ ℬ#5 𝑇-.
#5 à candidate tensor functions 

𝚯□ = 𝛩# ⊔ 𝛩& ⊔… ⊔ 𝛩#5 à vector of coefficients

§ Find Θ by solving a regularized regression problem so that most coefficients are zero
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OUTCOME: sparse data-driven Explicit Algebraic Reynolds-Stress Model (EARSM)

Data-driven discovery of turbulence models



SBL-SpaRTA [Cherroud et al., 2022]

§ Find 𝑝 𝚯□, 𝛂, 𝜎% 𝑏!"□ using the SBL algorithm
• Select functions in 𝐂□dictionary and infer posteriors
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SBL

𝜃#

𝜃$

𝜃$<#

𝜃&

…

𝜃#=>?

𝜃?=>?

𝐿 ≪ 𝑀

𝑏-.
□ = 𝐂□ ⋅ 𝚯□+ 𝜎

Example of discovered model:

𝐸[𝜃] 𝑠𝑡𝑑[𝜃] 𝜎

FDC : the discovered model correction is 0!



SBL-SpaRTA
§ Curved backward-facing step flow at Re=13700
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-●- Hi-Fi reference
--- 𝑘 − 𝜔 SST
__ SBL 
∎ ± 3𝜎



Mixtures of experts

§ How good is our model at predicting another data sets?

§ Large data sets: combining models trained on subsets better than single model trained over all data

§ Out of sample predictions: uncertainty on which model (among those at hand) is better

§ Generate hypermodels by combining component models through some gating functions (regional weights)
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Mixture of experts



Spatial model aggregation (X-MA) of turbulence models [de Zordo et al., 2021]

§ Consider a set of 𝐾 competing models 𝓜= {𝑴𝟏, 𝑴𝟐, … ,𝑴𝑲}

§ « Hypermodel »: 𝑀=>? 𝐱, 𝛉 = ∑7@&A 𝑤7𝑀A(𝐱; 𝛉), with
𝑤7 = 𝑤7 𝐱 = 𝑤7(𝜼(𝐱))

§ Regress 𝑤7(𝜼(𝐱)|𝐘) from data as a function of features à Random Forests
• Predict local model weights for a new case 𝑤@(𝜼(𝐱)|𝐘) and use them to aggregate individual model predictions
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NASA Turbulence Modeling Testing Challenge
§ Application to Test Case 1 2DZP: 2D Zero Pressure Gradient Flat Plate 

• Show (1) Cf vs. x and (2) u+ vs. log(y+) at x=0.97; compare with theory
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NASA Turbulence Modeling Testing Challenge

27y+Accurate prediction of the 2DZP



NASA Turbulence Modeling Testing Challenge
§ Application to Test Case 3 ASJ: Axisymmetric Subsonic Jet 

28y+



NASA Turbulence Modeling Testing Challenge
§ Application to Test Case 3 ASJ: Axisymmetric Subsonic Jet 
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𝐒𝐩𝐚𝐥𝐚𝐫𝐭 − 𝐀𝐥𝐥𝐦𝐚𝐫𝐚𝐬 𝐤 − 𝝐

𝐤 − 𝝎 𝐤 − 𝒍

u+

y+

Cf

X

y+

w

Cp

x/c

w

x/c

X-MA puts higher weight on the ‘jet model’ in the far jet region



NASA Turbulence Modeling Testing Challenge
§ Application to Test Case 4 2DWMH: 2D NASA Wall-Mounted Hump Separated Flow Validation Case 

30y+



NASA Turbulence Modeling Testing Challenge

31

u+ Cf

y+

w

Cp w

X-MA better than individual
models for all cases + 
improvement over the 
baseline



Application to the NACA 65 V103 cascade
§ Experts: Spalart-Allmaras, 𝐤−𝝐, 𝐤−𝝎 and 𝐤−l models of turbulence

§ Training: synthetic total pressure data generated from k-kl EARSM model for S1,S3 and S4; prediction for S2 
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𝐒𝐩𝐚𝐥𝐚𝐫𝐭 − 𝐀𝐥𝐥𝐦𝐚𝐫𝐚𝐬 𝐤 − 𝝐

𝐤 − 𝝎 𝐤 − 𝒍



Prediction of selected QoIs for an unseen scenario

§ Expectancy and standard deviation computed from local probability mass distribution (model weights)

33

Total Pressure loss in the wake 

X-MA consistently favors the best model at each prediction point

Velocity profile at suction side



Conclusions
§ Bayesian data-driven turbulence framework

• Sparse, interpretable and stochastic models

• Generalization through model averaging

• Delivers uncertainty estimates

§ Encouraging proof-of-concept obtained for data-driven turbulence modeling 
• application to the NASA turbulence modeling testing challenge

§ Future work:
• Further investigate SBL and other Bayesian machine learning algorithms

• Optimal choice of features?

• 3D flows? 

• How to perform efficient model-in-the-loop learning?

34



Acknowledgements
§ Bayesian learning

Soufiane Cherroud Maximilien De Zordo-Banliat Cécile Roques                    Xavier Merle Grégory Dergham
DynFluid, ENSAM DynFluid, ENSAM                           D’Alembert, SU                  DynFluid, ENSAM            Safran Tech

§ High-fidelity simulations

Xavier Gloerfelt Aurélien Bienner Camille Matar Donatella Passiatore Luca Sciacovelli
DynFluid, ENSAM DynFluid, ENSAM D’Alembert, SU  CTR Stanford  DynFluid, ENSAM 35



Advertizing
§ Two postdoc positions and a PhD position available in my LearnFluidS group:

• Physics-constrained deep network augmentation of turbulence models
• Model-consistent Bayesian learning of turbulence models from sparse data

§ One PhD position:
• Machine-learning-assisted wall-modelled large eddy simulations of transitional flows in 

turbomachinery

Contact: paola.cinnella@sorbonne-universite.fr
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Questions?
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Some properties of Bayesian inference

§ Asymptotic certainty: 
• Under suitable assumption on the prior, lim

%→B
𝑝 𝛉 𝐘 = 𝛿 𝛉 − 𝛉/CDE

• If the data cannot be captured by the model for any \theta (unrealizable case), lim
%→B

𝑝 𝛉 𝐘 = 𝛿 𝛉 − v𝛉 , with v𝛉
minimizing the distance between the predictive posterior and the true distribution in the Kullbach-Leibler norm

§ Asymtotic consensus:
• Given two different priors of the parameters, the corresponding posteriors tend to converge as 𝑛 → ∞
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Data-augmented turbulence modeling
§ Two training strategies

• A priori (“CFD-free”) training
• J Inexpensive (manipulate analytical expressions)

• L Requires high-fidelity, low noise data for turbulent quantities

• L Does not warrant model consistency

• L May lead to non robust models and conditioning problems

• Model-in-the-loop (“CFD-driven”) training
• J May use virtually any data (mean flow and turbulent quantities)

• J Model-consistent

• J Produces numerically robust models

• L Requires the solution of a costly multidimensional optimization 
problem

39

Turbulence model
bij=bij (F1,F2,…Fn)

Training 
data for bij

Functional 
basis

CFD flow solver

Output QoIs

Turbulence model
bij=bij (F1,F2,…Fn)

Training data 
for observed 

QoI

Functional 
basis

CFD flow solver

Output QoIs

A priori
training

CFD-driven
training

Validation

Validation



Bayesian regression vs LMS
§ Regression of noisy data:

𝑌7 = 𝑀 𝑋7; 𝛉 + 𝑒7
• 𝑒% modelled as zero mean, independent and identically distributed Gaussian noise with variance 𝜎&

𝑝 𝑒% 𝜎& =𝒩(0, 𝜎&)

§ Then:
𝑝 𝑌% 𝑥%; 𝛉, 𝜎& = 𝑁(𝑀 𝑋%; 𝛉 , 𝜎&)

and 

𝑝 𝐘 𝛉, 𝜎& =z
%"#

F

𝑁(𝑀 𝑋%, 𝛉 , 𝜎&) =z
%"#

F
1
2𝜋𝜎&

exp −
𝑌% −𝑀 𝑋%, 𝛉

&

2𝜎&

§ The maximum likelihood estimate of 𝛉 = arg max
𝛉

𝑝 𝐘 𝛉, 𝜎8 , or
min of the negative log-likelihood:

− log 𝑝 𝐘 𝛉, 𝜎8 =
1
2
log 2𝜋𝜎8 +

1
2𝜎8

8
79:

;
𝑌7 −𝑀 𝑋7, 𝛉

8

Which corresponds to minimizing the MSE to the data
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Bayesian regularization via priors
§ A prior expresses the degree of belief about values parameters can take:

• E.g.: zero mean Gaussian prior with 𝛼 the inverse variance (hyperparameter)

𝑝 𝛉 𝛼 = z
!"#

$
𝛼
2𝜋

exp −
𝛼
2
𝜃!&

• Encodes the belief that parameters are mostly zero (low complexity model)

§ Combine beliefs about the prior and the likelihood via Bayes’ rule => posterior:

𝑝 𝛉 𝐘, 𝛼, 𝜎& ∝ 𝑝 𝐘 𝛉, 𝜎& 𝑝 𝛉 𝛼 =z
%"#

F
1

2𝜋𝜎&
exp −

𝑌% − 𝑀 𝑋% , 𝛉
&

2𝜎&
z
!"#

$
𝛼
2𝜋

exp −
𝛼
2
𝜃!&

§ Maximum A Posteriori (MAP) approximation (𝛉 most probable a posteriori):

MAP 𝛉 = argmin
𝛉

1
2𝜎%o

*@&

(

𝑌* −𝑀 𝑋*, 𝛉
%
+
𝛼
2 o
+@&

'

𝜃+%

§ Gaussian prior à ridge-type regularization with 𝜆 = 𝜎%𝛼

§ Laplace prior à LASSO-type regularization

More peaked at 0 à sparser
41


