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Abstract  

Physics-aware data-driven methods for unsteady fluids: Real-time and machine 
learning approaches  
  
 To predict the evolution of physical systems, we need a model that tells us “what 
happens next” given “what we know so far”. 
This can be enabled by physical principles and data-driven approaches.  
On the one hand, physical principles, for example conservation laws, are extrapolative 
because they can provide predictions on phenomena that have not been observed, but 
they are “rigid”. 
On the other hand, data-driven modelling provides correlation functions within data, but 
they are “adaptive”.  
  
In this talk, the complementary capabilities of both approaches will be exploited to achieve 
adaptive modelling and optimization of nonlinear, unsteady, and uncertain flows.  
This is the subject of physics-aware data-driven methods.  
  
The focus of the talk is on computational methodologies for modelling and optimization of 
complex flows: (i) real-time data assimilation with a Bayesian approach to infer model 
errors (bias) with applications to thermoacoustic oscillations; and (ii) and auto-encoders 
and reservoir computers for reduced-order modelling of turbulent flows, which generalise 
POD/DMD methods to nonlinear dynamics, for the prediction of extreme events. 
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Abstract  

A Bayesian hierarchical multifidelity model for turbulent flow problems 
 

Conducting high-fidelity experiments and scale-resolving numerical simulations of turbulent 

flows can be prohibitively expensive particularly at high Reynolds numbers which are 

relevant to engineering applications. On the other hand, it is necessary to develop accurate 

yet cost-effective models for data-driven outer-loop problems involving turbulent flows which 

include uncertainty quantification (UQ), data fusion, prediction, and robust optimization. In 

these problems, exploration of the space of inputs and design parameters demands a 

relatively large number of flow realizations. A solution can be using multifidelity models 

(MFMs) which aim at accurately predicting quantities of interest (QoIs) and their stochastic 

moments by combining the data obtained from different fidelities. When constructing MFMs, 

a given finite computational budget is optimally used through running only a few expensive 

(but accurate) simulations and many more inexpensive (but potentially less accurate) 

simulations. 

The present study reports our recent progress on further development and application of a 
class of Bayesian hierarchical multifidelity models with automatic calibration (HC-MFM) 
which rely on the Gaussian processes. At each fidelity level, which can be associated to 
any of the turbulence simulation approaches, both model inadequacy and aleatoric 
uncertainties in the process of data fusion are considered. As a main advantage of the 
present multifidelity modelling approach, the fidelity-specific and cross-fidelity calibration 
parameters as well as the hyperparameters appearing in the Gaussian processes are 
simultaneously estimated within a Bayesian framework using a limited number of flow 
realizations. The Bayesian inference of the posterior distribution of various parameters is 
done using a Markov Chain Monte Carlo (MCMC) approach. As a major strong point of the 
HC-MFM, the predictions will be accompanied by the estimation of the associated 
confidence intervals. Given the generality of the HC-MFM, they can be applied to various 
problems related to fluid mechanics and turbulent flows.  For the latter, when combining the 
data of RANS (Reynolds-averaged Navier-Stokes) simulations with those of scale-resolving 
approaches such as direct numerical simulation (DNS) and large-eddy simulation (LES), 
where a small correlation between the data exists, the HC-MFM leads to accurate 
predictions. This is important, noting that the correlation-based MFMs which are widely used 
in the community are incapable of providing such level of accuracy. In the talk, we will 
discuss various aspects of the HC-MFM for several problems related to wall-bounded 
turbulent flows.  
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Figure 

 

 
 
 
(Left) Histogram of the height of the separation bubble in a turbulent flow over periodic hills 
due to the geometrical uncertainties, estimated by low-fidelity (LFM, 125 RANS 
simulations), high-fidelity (HFM, 5 DNS), and multifidelity (MFM, LF+HF data) models and 
compared to the ground truth (Ref., 9 DNS). (Right) Scatter plot of the MFM predictions 
against the reference data for samples of the uncertain parameters. The DNS data are 
taken from Xiao et al., 2020 (https://doi.org/10.1016/j.compfluid.2020.104431). For details, 

see Rezaeiravesh et al. 2022 (https://doi.org/10.48550/arXiv.2210.14790).  
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Abstract  

XGBoost-augmented RANS closure modelling of complex 3D flows 

 

Though growing computational capabilities enable wider use of Large Eddy Simulation 

(LES), Reynolds-averaged Navier-Stokes (RANS) simulations remain the dominant 

method for simulating turbulent flows of engineering importance. This dominance is 

expected to continue for the next few decades due to the significant computational 
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resources required to perform LES of industrially relevant flows. Therefore, for the next 

decades, industries such as wind energy, hydroelectric energy, aerospace engineering, 

automotive engineering, nuclear engineering, and chemical engineering will continue to 

rely on RANS simulations for engineering design. However, there are numerous well-

known deficiencies with RANS which are detrimental to the accuracy of these simulations. 

In particular, the “linear eddy viscosity hypothesis”, which is used in nearly all RANS 

simulations, fails to accurately predict turbulence in flows with stagnation, curvature, non-

equilibrium shear, and other phenomena of engineering relevance. Previously proposed 

“non-linear eddy viscosity” models somewhat address these shortcomings, but are not 

widely used due to stability issues, lack of generalization to new flows, and the reliance on 

hand-tuning numerous coefficients. 

 

Machine learning offers a way to leverage high-fidelity turbulent flow datasets (e.g, direct 

numerical simulation and LES), and avoid heuristically tuning closure coefficients. While 

various techniques for improving the accuracy of RANS simulations have been 

investigated, the most promising techniques target a main deficiency in RANS: the closure 

relationship. However, nearly all techniques have only been tested on simple flows such 

as channel flows, periodic hills flows, and square duct flows. Due to their data-driven 

nature, the applicability of these techniques for complex 3D flows of industrial relevance 

remains an open question.  

 

In this work, we adapt a previously presented augmented closure framework to a complex 

3D flow to demonstrate that these techniques are suitable for industrially relevant flows. 

We leverage a large dataset of over 20 million datapoints to augment the k-omega shear 

stress transport (SST) turbulence model via a series of XGBoost models. This training 

dataset is the largest used to-date in augmented RANS closure modelling. The 

augmented RANS model can generalize to new variations of flow over wall-mounted 

cubes, producing results that closely match the LES mean fields. These results spur 

further interest in applying nascent machine learning techniques to other industrial cases. 

Our findings enable industrial users to leverage in-house and public datasets for fast and 

accurate simulations of turbulent flows. 
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Sensor Placement for RANS-based Data Assimilation Using Eigenspace 

Perturbation 
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Sensor Placement for RANS-based Data Assimilation Using Eigenspace Perturbations 

In recent years a plethora of data assimilation techniques have been introduced for 

improved Reynolds-averaged Navier-Stokes (RANS) turbulence modelling [1]. A number 

of frameworks have been shown to achieve considerable improvements using limited, 

experimentally measurable, data. However, most applications thus far have been primarily 

dictated by the availability of existing data, usually generated for benchmarking and 

validation. In the present study, we introduce a strategy that addresses the important task 

of sensor placement for generating the experimental data in the first place, specifically 

tailored for RANS-based data assimilation. We employ the eigenspace perturbation 

approach which involves systematically perturbing the eigenvalues and eigenvectors 

predicted by a given RANS turbulence model (e.g. k-omega SST). Specifically, six CFD 

simulations are run in total: one simulation with the baseline model, two simulations 

perturbing the eigenvectors, and three simulations perturbing the eigenvalues [2]. All 
six simulations result in as many flow predictions, allowing us to generate sensitivity 

maps–based on the variances–for various quantities of interest (QoI). Then, for a 

prescribed number of sensors and for a given QoI, a gradient-free optimisation problem is 

solved where the sum of variance over all possible sensor locations is maximised to 

ensure sensors are placed in regions of flow field with highest uncertainty. A regularisation 

term, based on maximising the distance between the sensors, is 
introduced to avoid excessive clustering of sensors. Potential advantages of the approach 

include: not requiring experimental data; in principle, informing experiment design by 

directly accounting for structural errors in RANS modelling which is the basis for the 

eigenspace perturbation method; and relatively low computational costs compared to the 

methods based on deep neural networks [3], or other variational approaches [4]. 
To investigate the effectiveness of the method, we perform data assimilation using the 

adjoint-based field inversion approach, with the separated flow over the 2D NASA hump 

as a test case. Once, the data for a given QoI has been prepared (presently using an LES 

dataset to emulate experimental scenarios), the field inversion process involves 

perturbation of the transport equation(s) for the RANS model, k-omega SST in the current 

study, and an optimisation solution where the goal is to minimise the error between the 

RANS output and the higher-fidelity data [5]. Early results based on the current method, 

compared to uniform and random sensor placement strategies, demonstrate significant 

improvements in flow reconstruction. 
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Abstract  

XGBoost-augmented RANS closure modelling of complex 3D flows 

 

Though growing computational capabilities enable wider use of Large Eddy Simulation 

(LES), Reynolds-averaged Navier-Stokes (RANS) simulations remain the dominant 
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method for simulating turbulent flows of engineering importance. This dominance is 

expected to continue for the next few decades due to the significant computational 

resources required to perform LES of industrially relevant flows. Therefore, for the next 

decades, industries such as wind energy, hydroelectric energy, aerospace engineering, 

automotive engineering, nuclear engineering, and chemical engineering will continue to 

rely on RANS simulations for engineering design. However, there are numerous well-

known deficiencies with RANS which are detrimental to the accuracy of these simulations. 

In particular, the “linear eddy viscosity hypothesis”, which is used in nearly all RANS 

simulations, fails to accurately predict turbulence in flows with stagnation, curvature, non-

equilibrium shear, and other phenomena of engineering relevance. Previously proposed 

“non-linear eddy viscosity” models somewhat address these shortcomings, but are not 

widely used due to stability issues, lack of generalization to new flows, and the reliance on 

hand-tuning numerous coefficients. 

 

Machine learning offers a way to leverage high-fidelity turbulent flow datasets (e.g, direct 

numerical simulation and LES), and avoid heuristically tuning closure coefficients. While 

various techniques for improving the accuracy of RANS simulations have been 

investigated, the most promising techniques target a main deficiency in RANS: the closure 

relationship. However, nearly all techniques have only been tested on simple flows such 

as channel flows, periodic hills flows, and square duct flows. Due to their data-driven 

nature, the applicability of these techniques for complex 3D flows of industrial relevance 

remains an open question.  

 

In this work, we adapt a previously presented augmented closure framework to a complex 

3D flow to demonstrate that these techniques are suitable for industrially relevant flows. 

We leverage a large dataset of over 20 million datapoints to augment the k-omega shear 

stress transport (SST) turbulence model via a series of XGBoost models. This training 

dataset is the largest used to-date in augmented RANS closure modelling. The 

augmented RANS model can generalize to new variations of flow over wall-mounted 

cubes, producing results that closely match the LES mean fields. These results spur 

further interest in applying nascent machine learning techniques to other industrial cases. 

Our findings enable industrial users to leverage in-house and public datasets for fast and 

accurate simulations of turbulent flows. 
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Physics-informed compressed sensing for PC-MRI: an inverse Navier--Stokes 

problem 

We formulate a physics-informed compressed sensing (PICS) method for the 

reconstruction of velocity fields from noisy and sparse phase-contrast magnetic resonance 

signals. The method solves an inverse Navier--Stokes boundary value problem, which 

permits us to jointly reconstruct and segment the velocity field, and at the same time infer 

hidden quantities such as the hydrodynamic pressure and the wall shear stress. Using a 

Bayesian framework, we regularize the problem by introducing a priori information about 

the unknown parameters in the form of Gaussian random fields. This prior information is 

updated using the Navier--Stokes problem, an energy-based segmentation functional, and 

by requiring that the reconstruction is consistent with the k-space signals. We create an 

algorithm that solves this inverse problem, and test it for noisy and sparse k-space signals 

of the flow through a converging nozzle. We find that the method is capable of 

reconstructing and segmenting the velocity fields from sparsely-sampled (15% k-space 

coverage), low (~10) signal-to-noise ratio (SNR) signals, and that the reconstructed 

velocity field compares well with that derived from fully-sampled (100% k-space coverage) 

high (>40) SNR signals of the same flow. 

Figure  

 
 
 

 
 



 
Figure: A d-dimensional velocity field (u) that can be described by a Navier--Stokes 
problem (Z) has an underlying (d-1)-dimensional structure (x=Z -1 u), which is the 
parameter vector containing the shape of the object (Γ), the boundary conditions (g i, go), 
and the kinematic viscosity (ν). Images of  nd voxels depicting the d velocity components 
can be compressed/decompressed by solving an inverse/forward N--S problem. 
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Abstract  

Super-resolution of sparse spatial-observations of Navier-Stokes: a physics-

informed convolutional neural network approach 

 

In the absence of high-resolution samples, super-resolution of sparse observations on 

dynamical systems is a challenging problem with wide-reaching applications in 

experimental settings. Access to only sparse, or partial, observations obscures the 

underlying dynamics and limits the scientific analysis which can be conducted. Super-

resolution methods offer the means for high-fidelity state reconstruction from limited 

observations, a problem of fundamental importance in fluid dynamics. 

 

Classical approaches rely on existing high-resolution samples, an assumption which does 

not always hold. In the absence of these ground-truth labels, a common approach is to 

impose prior knowledge of the physics; regularising predictions with respect to known 

governing equations. In this work, we introduce a physics-informed convolutional network 

for super-resolution of sparse observations on grids, learning to super-resolve 

observations by employing knowledge about the underlying dynamical system. 

 

Results are demonstrated for the chaotic-turbulent Kolmogorov flow, increasing the 

resolution by fifteen times. We provide a comparison with naive interpolation methods, 

highlighting the ability of the method to retrieve the true high-resolution field. Analysis of 

the turbulent energy spectrum shows the ability to resolve finer scales of turbulence, 

alleviating the spectral folding which occurs as a result of sampling at low spatial 

frequency. By recovering finer scales of turbulence, we show that by imposing knowledge 

about the dynamical system a priori, it is possible to reconstruct missing physics. 

 

This work opens opportunities for physics-informed super-resolution in experimental 

settings where it is infeasible to collect dense spatial measurements. 
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Abstract  

Data-driven optimisation of coiled reactors 

 

Optimisation based on surrogate models is becoming popular for engineering problems due 

to its reduced computational efforts. In this research, we aim to maximise the plug flow 

performance of coiled reactors operating under oscillating conditions for a fixed geometry. 

This is done through Bayesian optimisation that uses Gaussian processes as a surrogate 
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model and is coupled with computational fluid dynamics (CFD) simulations in OpenFOAM 

through the PyFoam library. We run a transient analysis with ScalarTransportFoam solver 

where the tracer is injected into the water as a working fluid to obtain residence time 

distribution which is then fitted with the tank-in-series model to get the plug flow 

performance. We explore the parameter space for amplitude (1-8 mm) and frequency (2-8 

Hz) for a fixed Reynolds number of 50. The optimal conditions for plug-flow performance 

correspond to the Strouhal number St > 1 and oscillatory Reynolds number Re0<500. At 

these conditions, a pair of rotating vortices are observed that promote radial mixing and 

reduce axial mixing. We expect this low-cost, open-source, automated, closed-loop 

integrated modelling approach could be easily applied to a wide range of industrial mixing 

reactors to identify opportunities for performance improvement. 

 

 

Figure  
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Abstract  

Inversion of Turbulence Model Constants with Physics-Constrained Deep Learning: 

 
Numerical analyses of fluid flows usually rely on the Reynolds-Averaged Navier-Stokes 
(RANS) equations that are solved into a discretized domain. However, due to the 
nonlinearity of the convective term, the averaging process yields to an unclosed set of 

equations. The most used turbulence model to close the RANS equations is the k-[Equation] 

where two additional transport equations are solved for the turbulent kinetic energy and the 
turbulent dissipation rate. As the model does not strictly rely on first principles, several 
empirical constants are introduced to calibrate the solution with respect to canonical flows. 
The calibration of those constants is usually case-dependent and requires numerous 
numerical simulations e.g. to build a surrogate model or to perform Bayesian optimization. 
However, the computational cost of such processes can be prohibitive for many engineering 
applications. Deep Learning with embedded physics has shown to be a promising tool for 
inverse problem in fluid dynamics. In this research, we introduce a general framework for 

the estimation of the k-[Equation] turbulence model constants via a physics-constrained deep 

learning architecture to leverage the computational cost of solving multiple times the 
governing equations into a discretized domain. 
 
Firstly, and as a proof of concept, the ability of the present methodology is demonstrated 

through the estimation of the nominal constants of the k-[Equation] model. For that purpose, 

a RANS solution is used as training data and the RANS equations are embedded into the 
loss function of the deep neural network to guide the training process. The results show that 
the architecture is able to predict accurately the nominal coefficients within 4% of relative 
error for different test cases (e.g. Periodic Hill, Backward facing step, etc). Subsequently, 
high-fidelity (well-resolved LES or DNS) data are provided as training data and the results 
show that an optimized calibration of the constants helps to improve the predictive 
capabilities of low-fidelity simulations. 
 

 

Figure  
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Automatic differentiation for the dynamical systems view of turbulence 
 
In the last few decades the application of ideas from dynamical systems theory has 
significantly improved our understanding of transitional and weakly turbulent shear flows. 
The discovery of unstable periodic orbits (UPOs) embedded in turbulent attractors 
provides a unique insight into the underlying self-sustaining mechanisms, while there is 
hope that periodic orbit theory may yield a quantitative understanding of the role of various 
physical processes in the flow statistics. However, progress towards the latter goal has 
been incrementally slow due to both an inability to identify guesses for candidate UPOs 
and the poor performance of the Newton-Raphson methods used for convergence. 
  
In this talk I will discuss a new approach to the UPO search based on automatic 
differentiation (AD) that appears to dramatically overcome the past limitations, using two-
dimensional Kolmogorov flow as an example. By using a fully-differentiable flow solver 
and an appropriate loss function, robust guesses for UPOs with specific properties can be 
generated via a gradient descent algorithm, before being converged with a few iterations 
of standard Newton solver. I will use this approach to find hundreds of solutions at high 
Reynolds numbers where past methods have been ineffective. The solutions span the full 
range of observed turbulent dissipation rates, and a simple data-driven method can be 
applied to reconstruct a wide range of statistical properties from a fit to a single statistic. I 
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will also demonstrate how AD can be used to systematically search for more complex 
simple invariant solutions (homoclinic and heteroclinic orbits). 
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Abstract  

A reduced order model for space-time wave statistics using probabilistic 

decomposition-synthesis method  

 

We present a reduced order model for predicting space-time extreme wave statistics 

for directionally spread water waves. This reduced order model relies on the 

probabilistic decomposition-synthesis framework. In this framework, the probabilistic 

distribution is decomposed into a `background' region, where there are negligible 

nonlinear effects and a `instability' region where the nonlinear physics leads to heavy-

tailed statistical behaviour. In our reduced order model, we approximate the statistics in 

the background region with linear simulations to reduce the computational cost. The 

statistics in the instability region are estimated with nonlinear simulations of focused 

wave groups with carefully chosen initial conditions to capture the nonlinear effects 

during the formation of the extreme waves. The probabilistic statistics from these two 

components are synthesised with analytical expressions to model the overall behaviour 

of weakly nonlinear waves. This reduced order wave statistical model can provide 

accurate predictions of nonlinear space-time wave statistics at a fraction of 

computational cost of direct nonlinear Monte-Carlo simulations. 

Figure  
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Schematic diagram for the wave-current prediction model. (a): Linear undisturbed 

envelope field with extreme wave detected. (b): Simulation of extreme wave group with 

nonlinear Schrodinger equation. (c): Comparison of synthesised wave envelope 

distribution for undisturbed space-time wave statistics against direct numerical 

simulation. 
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Abstract  

Data-driven Adaptive Model Order Reduction Framework for Aerodynamics 

 
Model Order Reduction (MOR) approaches have garnered continued interest in the 
community for their applicability to various aerodynamics problems. Through MOR, 
complex flow phenomena of high dimensionality can be represented in a substantially 
lower-dimensional space while preserving flow physics. As such MOR is well suited for 
reducing the computational complexity associated with the high-fidelity CFD simulation of 
such flows. Reduced Order Models (ROMs) can be used in the context of parameter 
space exploration or design and optimisation (multi-query) problems. An example is the 
enrichment of time dynamics for unsteady flows ROMs or the exploration of operating 
conditions or various geometries for steady flows. However, a limitation of various 
reduced order methods lies with their ability to capture and recover highly nonlinear 
phenomena common to the aerodynamic problems of interest; nonlinearities can be 
observed for example in the time evolution of unsteady flows or the presence of transonic 
shocks as a result of varying flight conditions. Other MOR formulations can be chosen to 
better cope with this circumstance, though ultimately for a given problem usually no best-
in-class or globally best performing formulation can be found. 
  
Hence, the motivation behind this work is to introduce a so-called Adaptive MOR 
Framework that synergistically combines a number of reduced order methods with the aim 
of maximising accuracy of solution reconstruction (within a pre-defined parameter space). 
This is achieved by adaptive selection of the locally best performing method. The 
selection process is driven by a user-defined error metric according to which the 
reconstruction (approximation) error is evaluated throughout the parameter space for all 
available ROMs. The framework itself is data-driven and non-intrusive: the low-
dimensional models are constructed from an ensemble of correlated flow solutions and 
new solutions are reconstructed by coupling the ROMs to an interpolation technique. The 
computationally intensive aspects of the framework (namely a-priori CFD, low-dimensional 
model generation, and error estimation) are executed offline, thus new solutions can be 
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obtained fast, in the online stage. In this presentation we will focus on an overview of the 
adaptive framework and its applications for various unsteady and steady test cases. 
 
Figure 

 
Comparison of Density field reconstruction near 30P30N multi-element airfoil using 
Adaptive (left) vs. Single-ROM/POD (right) approach. Black contour lines are reference 
CFD solutions, coloured contour lines are reconstructions. 
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Abstract 

Data-driven reduced-order modelling of dynamo waves 

 

Coherent in time and space magnetic fields of planets and stars are prominent footprints of 

their inner dynamical activity. They appear in a dynamo process which is supported by 

turbulent motions of conducting fluid inside these astrophysical objects and opposed by 

the Ohmic dissipation. Stellar magnetic activity frequently manifests itself through 

oscillating dipolar or quadrupolar magnetic fields, generated through stretching of the field 

by small-scale helical flows (so-called alpha-effect). These dynamos can be considered as 

nonlinear chaotic dynamical systems, whose saturated states depend on the nonlinear 

interaction between the flow and the magnetic field. A rigorous description of these 

saturation mechanisms is important for better understanding of long-term behaviour and 

variations in large-scale stellar and planetary flows. 

 

In this work, we employ a data-driven approach to describe these nonlinearities. As a 

benchmark system, we use the one-dimensional dynamo model of Bushby (2003). The 

partial differential equations (PDE) of this system resemble dynamically more realistic three-

dimensional dynamo flows: the magnetic field evolution is influenced by the flow velocity 

through an “induction” term, and the velocity is affected by the magnetic field through the 

quadratic feedback term – Lorentz force. We explore a range of dynamo numbers D, which 

is a parameter representing the strength of the alpha-effect in this system. We found that 

dipolar dynamo waves appear at D=Dcr through a supercritical Hopf bifurcation. As the 

dynamo number increases, the quadrupolar mode also becomes unstable, and eventually, 

the magnetic field become modulated or chaotic. 

 

Here, we use Principal Orthogonal Decomposition (POD) to extract the main dynamical 

components corresponding to the large-scale patterns of magnetic and velocity field. We 

related their temporal coefficients in a nonlinear reduced-order system of ordinary differential 

equations using the method of Sparse Identification of Nonlinear Dynamics (SINDy). The 

resulting nonlinear model is consistent with the original PDE equations of the system; in 

particular, its solutions saturate through velocity field without artificial damping terms. This 

model reproduces the Hopf bifurcation to dynamo and helps to understand which nonlinear 

interactions are dynamically important in this system. Finally, we construct a reduced-order 

model describing the interaction between the dipolar filed, the quadrupolar field and the flow 

velocity. 

 

Figure  



 

 

 

 
The evolution of dynamo waves, together with the temporal coefficient of the main velocity 

field mode (dotted line) and the feedback of velocity on the waves from the reduced-order 

SINDy model (solid line). 
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Abstract  

Flow reconstruction in thoracic aorta from 4D-MRI data 

 

Patient-specific geometry of the thoracic aorta is used to investigate the potential of 

reconstructing the unsteady, three-dimensional blood flow from 4D-MRI plane (4-

Dimensional Flow Magnetic Resonance Imaging) using a linear dynamic estimator. Rigid-

wall geometry with patient-specific boundary conditions are considered for the simulation. 

Three-dimensional Proper Orthogonal Decomposition (POD) is used to reduce the model 

order based on the kinetic energy of the fluctuated flow. The flow field is approximated using 

the first four most energetic POD modes, which carry 98% of the total kinetic energy. The 

dynamic estimator is identified using a subspace system identification algorithm, N4SID, with 

the fluctuated streamwise velocity on the aorta arch as input (shown in figure 1) and the time 

coefficients of the POD modes as output. The estimator performance is validated using 

sensor signals from actual 4D-MRI data on the aorta arch. The reconstructed flow field is 

then compared to the CFD (Computational Fluid Dynamics) and 4D-MRI data at other 

planes. With reference to the training data from CFD, the average estimation accuracy is 

around 85%. It reduced to 50% when compared to the 4D-MRI flow field. These values are 

calculated based on the velocity field at the different planes along the thoracic aorta, part of 

mailto:d.ahmed18@imeprial.ac.uk


which are shown in figure 1. The estimation accuracy was found to strongly depend on the 

match between the CFD and the 4D-MRI, where higher accuracy is expected for a lower 

difference between the two data sets. This mismatch could be attributed to the uncertainty 

of the 4D-MRI, which has a limited spatiotemporal resolution compared to the CFD. With the 

current approximations, the estimation accuracy looks very promising. Further investigations 

into improving it are currently being considered. To the authors’ knowledge, this represents 

the first study to reconstruct the blood flow using a linear dynamic estimator from planar 4D-

MRI data. 
References: 
[1] Stokes, C., Bonfanti, M., Li, Z., Xiong, J., Chen, D., Balabani, S., & Díaz-Zuccarini, V. 

(2021). A novel MRI-based data fusion methodology for efficient, personalised, compliant 

simulations of aortic haemodynamics. Journal of Biomechanics, 129, 110793. 
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4D-MRI CFD Reconstructed flow 

 

 
 

 

Figure 1 Schematic of the thoracic aorta and a comparison of the velocity magnitude 

between the 4D-MRI, CFD and the reconstructed flow on different sections (I-IV) along the 

descending aorta. 
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Abstract 

Data-enabled flow control 
 
Model-free Reinforcement Learning (RL) algorithms have been employed recently to 
discover flow control strategies using data obtained from direct intraction with the flow 
system (i.e. simulation environment). In case of bluff bodies, for example, efficient drag 
reduction has been successfully demonstrated by suppressing vortex shedding at laminar 
regimes using probes located in the flow downstream of the body to achieve full-state 
observability and control. In the present study, we consider partial measuremnts, due to 
sensor limitations in practical applications, i.e. by restricting sensing to pressure probes 
mounted on the base of a bluff body. The performance of the RL under partial observability 
is significatly degraded, limiting drag reduction by 65% compared to probes optimally located 
downstream of the body. A method integrating memory into the control architecture is 
proposed to improve performance in partially observable systems. By  augmenting the input 
to the controller (neural network) with a time series of lagged observations, the dynamic 
controllers discovered using RL completely stabilise the vortex shedding using only surface 
mounted sensors. Finally, the hardware implementation of RL algorithms in turbulent flows 
will be discussed for reducing the drag of fully turbulent wakes by real-time interaction with 
the wind tunnel setup, at regimes that are intractable using simulations.  These results are 
a first step towards realistic implementation of reinforcement learning of partially observable 
and intractable flows. 
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Abstract  

Towards a framework for prediction, UQ and data analysis of urban wind flows  

 

Computational Fluid Dynamics (CFD) is widely used as a tool to model urban wind flow for 

a variety of applications including pedestrian comfort, pollutant dispersion and wind energy. 

However, despite employing various modelling approximations, predicting wind patterns in 
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urban environments in real-time remains challenging due to the limited computational 

resources and the potential uncertainties due to both physical and numerical parameters.  

The present study reports our recent progress on developing a data analytic framework 

based on wind flow simulations in a part of the city of Manchester, UK. CFD simulations are 

performed for selected values of the uncertain parameters; their results are used as input to 

generate a surrogate model which is significantly less computationally expensive than CFD 

and can predict the flow field over the space of the uncertain parameters as well as the 

physical space. The uncertain parameters include the wind velocity magnitude and direction 

over the boundaries of the simulation domain. The surrogates are constructed by Gaussian 

Process Regression (GPR) which naturally predicts the uncertainty in the data and 

estimates confidence intervals for the predictions. The UQ (Uncertainty Quantification) 

forward problem and global sensitivity analysis are performed using non-intrusive 

generalized polynomial chaos expansion (gPCE) and analysis of variances (ANOVA), 

respectively. Blending these techniques with the GPR, the effects of combined uncertainties 

from the data and parameters/inputs can be studied. The integrated data analytics 

framework based on the combination of the CFD simulations, surrogate modelling and UQ 

analyses is being optimized to make accurate real-time predictions and analyses possible.  

The turbulent flow simulations are performed using RANS (Reynolds-averaged Navier-

Stokes) approach in OpenFOAM. A workflow is designed to create a computational mesh 

for the imported topology of urban areas, set initial and boundary data, perform simulations 

on high-performance computing resources, extract the resulting flow fields, create the 

surrogate, and perform UQ analyses for wind direction and reference velocity magnitude. 

The inflow boundary conditions represent a fully developed neutral surface layer, which is 

specified using a logarithmic profile for velocity, a constant turbulence kinetic energy, and a 

profile for the turbulent dissipation rate. 

As the next development stage, large eddy simulations (LES) and hybrid RANS-LES will be 

performed which together with the RANS data can be used for constructing efficient multi-

fidelity predictive models for urban flows. 

 

 

Figure  

 



 
Figure 1. Summary of the workflow; from left to right: (a) The CAD geometry of the urban 

region, (b) CFD simulations to create training data for constructing surrogate models for 

prediction, and (c) UQ, and other data analytic approaches.  
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Abstract  

Presentation Title: Learning Stochastic Dynamics with Neural Networks to study 
Zonal Jets 
 

Machine Learning has emerged as a powerful tool for identifying patterns in datasets and 
increasingly has been applied to the field of fluid dynamics to either provide insight into or 
to attempt to model fluid flows. We look to provide both by using deep neural networks to 
provide a reduced-order model of the Beta-Plane approximation - a barotropic, 
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stochastically forced turbulent flow on a beta-plane - that provides an analogue for 
tropospheric mid-latitudinal dynamics, describing European weather. 
 

The system lies on a 2D plane, with the lack of baroclinicity due to the absence of 

stratification resulting in the requirement for small-scale eddies, that generate turbulence, 

to be parameterised by a stochastic forcing. The idealised model allows us to study the 
formation of zonal jets and their variability, with the formulation of a reduced-order model 
providing insight into the underlying dynamical mechanisms. 
 

We utilise methods in manifold learning and adversarial training to learn the system 
dynamics using a stochastic neural network - accounting for the nature of the underlying 
system. The model is able to produce an emulation of the system, 4 orders of magnitude 
faster than numerical integration from a physics-based model. 
 

As the underlying system is non-deterministic, model verification is evaluated between an 

ensemble of predictions from the deep learning model, obtained by sampling in the latent 

space of the model, and an ensemble of numerical integrations with different realisations 

of noise - with information gained from both the size of the neural network’s latent space 

as well as the information within it, enabling for the exploration of this newly defined state-

space, yielding insight into the dynamics of the system. 
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Abstract  

A physics-informed machine learning approach to super-resolution of 4D-flow MRI 

in the left ventricle 

 
 
As is well-established in the vasculature, it is hypothesised that haemodynamic flow 
abnormalities within the heart chambers can provide insights into how and why particular 
pathologies evolve. 4D-flow magnetic resonance imaging (MRI), which provides non-
invasive blood flow reconstructions in the cardiovascular system, has the potential to be a 
key tool such research. However, to realise it’s potential, there are certain issues 
associated with the modality that must be addressed. Low spatio-temporal resolution and 
significant noise artifacts are present, reducing the quality of the acquired velocity field. 
Moreover, clinically relevant derived quantities like pressure, vorticity and wall shear 
stresses are not directly measured, and thus highly susceptible to effects of corruption in 
the data. Therefore, the effectiveness of the modality to establish links between flow 
abnormalities and pathologies is limited, and recent efforts have been made to super-
resolve and denoise 4D-flow MRI data to improve the accuracy of predictive 
haemodynamic quantities. 
We propose a physics-informed super-resolution approach to address the aforementioned 
shortcomings associated with 4D-flow MRI data, presenting the first application of this 
approach to super-resolve flow data in both the left ventricle and moving domains in 
general. Weak regularisation of the model is performed using the Navier-Stokes equations 
and the no-slip condition on the endocardium, which not only constrains model predictions 
to accurately super-resolve the velocity field, but also uncovers the underlying pressure 
field without the use of pressure data or boundary conditions.  
We demonstrate the feasibility of our model through two computational fluid dynamics 
(CFD)-generated cases, namely a 2D idealised ventricle and a computed tomography-
acquired, patient-specific left ventricle. For each case, we generate multiple synthetic 4D-
flow data sets from our CFD results at various downsampling rates and noise levels, 
establishing the effective range of the model with regard to data degradation. We show 
robustness to both effects, achieving normalised velocity RMSE values of under 16% at 
extreme spatial and temporal upsampling rates of 16x and 10x respectively, using a signal-
to-noise ratio of 7.  
 
 

Figure  
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Abstract  

Turbulence modeling: artificial vs human intelligence 

 
Reynolds-averaged Navier-Stokes (RANS) models of turbulent flow remain the 
cornerstone of flow analysis and design in fluids engineering, despite several inherent 
limitations that prevent them from capturing the correct physics of flows even in simple 
configurations. Instead, these models are developed and tuned to match certain quantities 
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of interest to the engineer while providing reasonable performance over a wide range of 
flow situations. 
On the other hand, the increased availability of high-fidelity data from both advanced 
numerical simulations and flow experiments has fostered the development of a multitude 
of “data-driven” turbulence model based on data-assimilation, Bayesian calibration, as 
well as machine learning techniques. Although these models can provide significantly 
better results over classical models for the narrow class of flows for which they are 
trained, their generalization capabilities remain far inferior to those of classical models, 
while the computational cost of model training and validation is significant. 
In this talk I will first review the qualities and drawbacks of RANS model derived from 
human or artificial intelligence. Then I will present a methodology for developing data-
driven models with improved generalization capabilities while delivering estimates of the 
predictive uncertainty. I will conclude with an outlook on future research avenues for the 
development of industry-ready data-driven models. 
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Abstract  

Hard-constrained thermoacoustic neural networks 

 

In thermoacoustic systems, if the heat release is sufficiently in phase with the pressure, 

self-excited oscillations with finite amplitudes can occur. Thermoacoustic oscillations can 

have detrimental consequences for gas turbines and rocket engines. Typical nonlinear 

regimes are limit cycles, quasiperiodic and chaotic oscillations. We develop physics-

aware feedforward neural networks that learn thermoacoustic oscillations from data with a 

focus on limit cycles, which are characterised by periodic orbits in the phase space. In 

addition to a data-driven loss, a physical residual penalises solutions that violate the 

conservation of momentum and energy as a soft constraint. Further, we explore hard 

constraints in time and space domains. We impose periodicity by periodic activation 

functions and a trainable angular frequency. We employ acoustic eigenfunctions as spatial 

modes, while a jump discontinuity in velocity at the flame is captured by discontinuous 

modes.  We test the algorithm on synthetic data generated from a time-delayed model of 

a Rijke tube and a higher-fidelity model with a kinematic flame. We find that (i) physics 

constraints significantly improve the predictions from noisy or sparse data, (ii) periodic 

activations outperform conventional activations in terms of extrapolation capability, and 

(iii) boundary conditions and discontinuities can be hard-coded with a-priori selected 

spatial modes. This work opens up possibilities for the prediction of nonlinear 

thermoacoustics by combining physical knowledge and data.   
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Abstract  

 

Data assimilation in thermoacoustics: generating a quantitatively-accurate model of 

an electrically-heated Rijke tube. 

 

 

We perform 7000 experiments at 175 stable operating points on an electrically-heated 
Rijke tube. We pulse the flow and measure the acoustic response with eight probe 
microphones distributed along its length. We assimilate the experimental data with 
Bayesian inference by specifying candidate models and calculating their optimal 
parameters given prior assumptions and the data. We model the long timescale behaviour 
with a 1D pipe flow model driven by natural convection into which we assimilate data with 
an Ensemble Kalman filter. We model the short timescale behaviour with several 1D 
thermoacoustic network models and assimilate data by minimizing the negative log 
posterior likelihood of the parameters of each model, given the data. For each candidate 
model we calculate the uncertainties in its parameters and calculate its marginal likelihood 
(i.e. the evidence for that model given the data) using Laplace’s method combined with 
first and second order adjoint methods. We rank each model by its marginal likelihood and 
select the best model for each component of the system. We show that this process 
generates a model that is physically-interpretable, as small as possible, and quantitatively 
accurate across the entire operating regime. We show that, once the model has been 
selected, it can be trained on little data and can extrapolate successfully beyond the 
training set. 
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Abstract  

Multi-scale rotation-equivariant graph neural networks for unsteady Eulerian 

fluid dynamics 

 
Multi-scale rotation-equivariant graph neural networks for unsteady Eulerian fluid 
dynamics 
The simulation of fluid dynamics, typically by numerically solving partial differential 
equations, is an essential tool in many areas of science and engineering. However, 
the high computational cost can limit application in practice and may prohibit 
exploring large parameter spaces. Recent deep-learning approaches have 
demonstrated the potential to yield surrogate models for the simulation of fluid 
dynamics. While such models exhibit lower accuracy in comparison, their low runtime 
makes them appealing for design-space exploration. We introduce two novel graph 
neural network (GNN) models, multi-scale (MuS)-GNN and rotation-equivariant 
(RE)MuS-GNN, for inferring the time evolution of the fluid flow on a fluid domain 
discretised into an unstructured set of nodes. In both models, the previous state is 
processed through multiple coarsenings of the graph, which enables faster 
information propagation through the network and improves the capture and forecast 
of the system state, particularly in problems encompassing phenomena spanning a 
range of length scales. Additionally, REMuS-GNN is architecturally equivariant to 
rotations, which allows the network to learn the underlying physics more efficiently, 
leading to improved accuracy and generalisation. We analyse these models using 
two canonical fluid models: advection and incompressible flow around an elliptical 
cylinder. Our results show that the proposed GNN models can generalise from 
uniform advection fields to high-gradient fields on complex domains. The multi-scale 
graph architecture allows for inference of incompressible Navier-Stokes solutions, 
within a range of Reynolds numbers and design parameters, more effectively than a 
baseline single-scale GNN. Simulations obtained with MuS-GNN and REMuS-GNN 
are between two and four orders of magnitude faster than the numerical solutions on 
which they were trained. 
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Abstract  

Reduced-Order Models for Magnetoconvection in 2D 

 
Direct numerical simulation of full state equations can be computationally intensive and 
result in high dimensional datasets. While the numerical data is high-dimensional, the flows 
themselves can exhibit much lower dimensional behaviour. This has led to an interest in 
finding reduced order models for such systems.  
  
Derivation of a reduced-order model typically relies on knowledge of the underlying 
equations, in which the analytic modes are projected back on the governing equations. 
While this encodes the appropriate physics of the system, the governing equations are not 
always known making this method intrusive. Recently, data-driven model discovery 
techniques have been shown to be able to find reduced-order models purely from 
measurements of the system, automating this process. Data driven methods have the 
advantages that an optimal set of modes can be used to describe the data through proper 
orthogonal decomposition. The time series of these modes projected on the measurements 
can then be used to generate a reduced order model via the sparse identification of 
nonlinear dynamics [1].  
  
We apply this method to 2D magnetoconvection, where traditional convection can be 
inhibited by the presence of a magnetic field. These convective processes are important, for 
instance, at the surface of stars. It was shown that the governing equations for 
magnetoconvection admit weakly nonlinear solutions given by a system of 5 ODEs [2]. 
These are instructive as they can predict features such as whether convection first sets in as 
a direct instability or overstability. Stability criteria can then be determined with much greater 
ease than by simulation of the full PDE system. However, these equations are only valid 
near the onset of instability, when the velocities are small.  
  
Data-driven methods provide a new avenue to find reduced order models in 
magnetoconvection, further from the onset of instability. We first apply these methods to 
understand if recovery of the analytic solutions near fixed points is possible, before looking 
for reduced order models further from onset in regimes with aperiodic motion. By 
comparison with the solutions of the full PDEs, we assess the utility of the reduced models 
both for prediction and for reproducing the statistics of the full system; we further test how 
well a model derived for a certain set of parameters reproduces the dynamics for parameter 
sets for which no direct data is available. 
  
[1] E. Knobloch, N. O. Weiss, and L. N. Da Costa. Oscillatory and steady convection in a 
magnetic field. Journal of Fluid Mechanics, 113:153–186, 1981.  
  
[2] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing 
equations from data by sparse identification of nonlinear dynamical systems. Proceedings of 
the National Academy of Sciences, 113(15):3932–3937, 2016. 
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Abstract  

Assimilating physics-based flame models from flame images 

 

We perform experiments with an acoustically forced laminar premixed bunsen flame and 

assimilate experimental data into a physics-based premixed flame model. 

The experimental rig is a ducted Bunsen flame supplied by a mixture of methane and 

ethylene. Flames produced by a wide range of equivalence ratios and mass flow rates are 

studied. These cover both stable and unstable operating conditions. In the stable regime, the 

flame is harmonically forced by a loudspeaker and the forced response is recorded. In the 

unstable regime, the flame is initially stabilised using active control. When the active control 

is switched off, the self-excited oscillations are recorded. A high-speed camera is used to 

capture the dynamics of the perturbed flames, as well as snapshots of the stable flame 

shape. 
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For the model, we assume that the flame thickness is much shorter than the hydrodynamic 

length. The flame is then approximated by an axisymmetric surface dividing the reactants by 

the products. Each point of the surface is in kinematic equilibrium between the local flame 

speed and the reactants velocity field. The flame speed is dependent on the flame stretch 

with the Markstein length. We assume that the velocity field can be expressed by the sum of 

a steady flow and an unsteady perturbation. A shape parameter linearly determines the 

velocity profile of the steady flow such that when it is set to zero the flow corresponds to a 

uniform flow, and when it is set to one the flow corresponds to a Poiseuille flow. The 

perturbation is assumed to be generated by the harmonic acoustic forcing and takes the 

form of a wave originating at the burner rim and traveling in the longitudinal direction with 

constant phase speed.  

We tune the model parameters by minimising the Euclidean distance between the flame-

front positions predicted by the model and the ones captured by the experimental snapshots, 

during a limit cycle. This process is accelerated by adjoint methods which give the sensitivity 

of the flame-front position predicted by the model with respect to the model parameters. 

Adjoint methods are also used to find a periodic solution of the model equations for each set 

of parameters. 

This study is preliminary to the generation of a physics-based quantitatively accurate model 

of a flame-driven Rijke tube with Bayesian inference, in which the model parameters are 

assimilated with their uncertainties using Laplace's method combined with first and second-

order adjoint methods. 
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Abstract  

Real-time bias-aware data assimilation with echo state networks 

 
Low-order models provide qualitative-accurate estimates at low computational cost. 
However, they only capture the dominant physical mechanisms of the quantity of interest, in 
statistical terminology: low-order models are biased. Real-time data assimilation are 
Bayesian inference methods that optimally combine reference data (from experiments or 
high-order models) with knowledge given by a numerical model. This real-time update 
improves the quantitative accuracy of the model estimate, bypassing the need for data 
storage and postprocessing. Nevertheless, these methods assume that there is no 
systematic error in the model. We propose a bias-aware data assimilation framework where 
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we prescribe the model bias with an echo state network, which is a form of reservoir 
computing. This enables the application of real-time data assimilation to low-order models 
which simultaneously infers the physical state, as well as the key parameters, and the bias of 
a low-order model. The echo state network is trained a priori and then runs in parallel to an 
ensemble data assimilation algorithm. Every time that reference data becomes available, we 
(1) perform a Bayesian update on the model state and parameters, and (2) re-initialise the 
echo state network with a new estimate of the model bias. We test this method on a low-
order thermoacoustic model, using synthetic reference data from a higher-order model. 
Results show that, with a short training time, the echo state network is able to self-adapt and 
learn the hidden dynamics of unseeing bias data of the low-order model. This work opens 
new possibilities for uncertainty quantification in real-time applications.  
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Abstract  

Dynamic Mode Decomposition for Channel Flow with Cavity Fluid Flows 
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Dynamic Mode Decomposition (DMD) is a powerful technique in Fluid Mechanics that can 

extract fundamental information from snapshots of the fluid flows. Dynamic Mode 

Decomposition algorithm reveals the Spatio-temporal coherent structures of the model by 

using only the data, without the governing equations so DMD is a fully data-driven 

technique. 

 

The aim of this study is to diagnose the flow characteristic of the model and reconstruct the 

flow by revealing the pattern found in the flow by using DMD. DMD is applied to a fluid flow 

model called “Channel Flow with Cavity Flow’’ obtained by the flow Channel flow over a 

square cavity, and the turbulent flow field is investigated. The data obtained by OpenFoam 

solutions of this flow and reconstructed by DMD are in the Figure. In this Figure, the above 

illustration is obtained by OpenFoam and the below is obtained by DMD for iteration number 

i=80. 
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Abstract  

 

Simulating zonal flows using Markov neural operators 

 

Many astrophysical and geophysical systems of interest take place in a parameter regime 

that is beyond the scope of direct numerical simulation (DNS). Furthermore, even when 

DNS is accessible the fact that these systems often contain multiple temporal and spatial 

scales renders them stiff, meaning they require substantial computational resources. 

However, despite needing a fine resolution in order to obtain an accurate solution many 

flow features of interest, such as large scale zonal flows, occur on a much larger scale than 

the fluctuations that produce them. Hence, there is a possibility that reduced order models 

which aim to capture these large scale features could help in efficiently modelling these 

flows, and ultimately in extrapolating them to regimes that are currently inaccessible. 

 

In this poster we explore one such possibility for modelling these flows based on a machine 

learning framework. Namely the Markov neural operator (MNO) proposed by Z. Li et al. 

(Learning Dissipative Dynamics in Chaotic Systems, NeurIPS 2022), which has been shown to 

accurately capture the statistics of chaotic flows including Kolmogorov flow. We consider 

learning a MNO for the Busse annulus, a model for rotating convection that is capable of 

giving rise to large scale zonal jets. Despite its simplicity, the Busse annulus exhibits 

complex phenomena such as the formation of multiple jets and bursting, making it an ideal 

system in which to assess the suitability of using an MNO for predicting zonal flows. Special 

attention is given to two main questions. Firstly, can the MNO approach predict the large 

scale statistics of zonal flows when the step size is larger than that of the underlying DNS? 

Secondly, does the MNO accurately predict the dynamics of different phenomena such as 

bursting? 
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Experiment of 2D Multi-material fluid-deformable solid simulation on LSTM Network 

 

The goal of this experiment is to conduct a qualitative and quantitative study of the fluid 

and solid simulation to minimize the error of the simulation in the long prediction using 

Recurrent neural network.  In this experiment, we try to combine LSTM  (Long short-term 

memory) with MLP (Multilayer Perceptron ) to combine temporal and spatial modelling. 

We use a window of 2 frames as the input and add dropout after the 1st and 2nd LSTM 

layer for regularization in improving the performance of the network. In the third layer of 

LSTM, we remove the loop to transform the dimension of the output shape from 2x1250 to 

1x 250  to match the dimension of the next MLP network. In the end, the network 

upscaled to  to match the output. The prediction results shows that compared with LSTM, 

the MLP model is better at predicting the shape of the liquid but suffers badly in temporal 

modelling (e.g. prediction drifting - jumping to certain state of simulation and showing a 

different flow). The LSTM, on the other hand, is able to maintain the trajectory of the fluid 

state but struggles to maintain the expected shape of liquid. The Combination of LSTM 

with MLP gives the best results. To analyze the error of the forward step method 

quantitatively, we compute the average MSE of particle positions and velocities at each 

frame with respect to the ground truth. 
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Abstract  

 

Reduced Order Models of Aortic Flow via Robust Proper Orthogonal Decomposition 

 

Computational Fluid Dynamics (CFD) is a widely-used tool in cardiovascular 

biomechanics since it can provide insights into the haemodynamics of cardiovascular 

conditions. However, CFD is extremely expensive in terms of computational resources, 
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hindering their use in cardiovascular clinics. This challenge can potentially be overcome 

with the help of data-driven methods, especially with Reduced Order Models (ROMs). In 

the present work, we present the implementation of Robust Proper Orthogonal 

Decomposition (RPOD) compared to the traditional Proper Orthogonal Decomposition 

(POD) applied to the flow inside a human aorta. The flow data is obtained from an in vitro 

PIV experiment using a patient-specific phantom and patient-specific boundary conditions. 

The kinetic energy contents in POD/RPOD modes are calculated, and multiple ROMs are 

created to reconstruct the flow fields for each case. When using the same number of 

modes, RPOD outperforms POD in terms of reconstruction performance and efficiency. 

The ROM, consisting on the first two RPOD modes, is able to capture more than 98% of 

the total kinetic energy, while the first two POD modes amount to only about 86%. The 

RPOD reconstructed flow field also appears to be spatially and temporally smoother than 

the original flow field, making the algorithm suitable for noise reduction purposes. This 

might be beneficial in enhancing in vivo velocity data obtained via medical imaging 

modalities such as 4D MR making them more suitable for data driven modelling. 
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Figure 1 The reconstructions of aortic flow (top) by 2 and 10 POD modes,  

and (bottom) by 2 and 10 RPOD modes 
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    Data-driven optimization of multiphase flows 

 

The prediction of the drop size distribution (DSD) in liquid atomization and sprays is key to 

the optimization of multi-phase flows, from gas-turbine combustion, through agriculture to 

healthcare. On the one hand, it is interesting to predict certain global features of the DSD 

with known accuracy. Examples are the mean of the distribution (or higher order 

moments), as well as the cumulative probability at a finite number of points, i.e., the 

probability of having drops smaller than certain sizes of interest. On the other hand, the 

detailed continuous DSD is necessary when using generative approaches, e.g., to 

produce synthetic population of drops.  

   We use multi-task Gaussian process regression (GPR) to infer from data the mean and 

an arbitrary number of cumulative probabilities of the DSD as a function of the input 

parameters. The input parameters are the spray angle, the Reynolds, and Weber number 

of the jet, and the data (i.e., empirical populations of drops) are obtained from high-fidelity 

simulations. In a second step, we perform another GPR to infer the continuous DSD at 

any arbitrary point in input space. This provides an estimator of the DSD that is unbiased 

independently of the binning scheme, as the GPR framework lets us impose the mean of 

the predicted DSD, while consistently consider its uncertainty. Moreover, the predicted 

DSD is associated with confidence intervals which account for the fact that the data from 

simulations have different level of fidelity for different drop sizes. The work opens up 

opportunities for data-driven surrogate modelling and optimization of atomizers. 

 

 


