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Clinical Motivation: Impact of Cardiovascular Disease
• WHO estimates that cardiovascular disease (CVD) kills >17 million yearly worldwide 

• Heart failure is a major contributor to CVD

• Estimated yearly cost of CVD is $219 billion in US alone
• In UK, this figure currently stands at £7.4 billion

• Additional indirect costs incur £15.8 billion

CVD in USA:
• $219 billion

• 655,000 deaths

CVD in UK:
• £23 billion

• 160,000 deaths



Haemodynamics in the Heart Chambers

Hanson, C, https://statenews.com/article/2022/02/heart-healthy-cardiovascular-mri-imaging-is-now-at-sparrow-hospital?ct=content_open&cv=cbox_featured
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Quantifying Haemodynamics in the Heart

Imaging

Doppler echocardiography 4D-flow MRI

Faurie, J. et al., IEE transactions on ultrasonics, ferroelectrics, and frequency control, 2016
Pruitt, A. et al., Fully self-gated whole-heart 4D flow imaging from a 5-minute scan, 2021

CFD
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Quantifying Haemodynamics in the Heart

Imaging

4D-flow MRILow spatial resolution:
2.5 − 3mm3

Temporal averaging:
Over scan duration

Noise artifacts:
Non-Gaussian spatial distribution

Faurie, J. et al., IEE transactions on ultrasonics, ferroelectrics, and frequency control, 2016
Pruitt, A. et al., Fully self-gated whole-heart 4D flow imaging from a 5-minute scan, 2021



Quantifying Haemodynamics in the Heart

Imaging

4D-flow MRI

Small-scale flow features missed:
Particularly important in analysis of vortex 

dissipation

Poor accuracy of derivatives:
Relevant variables such as vorticity and stresses

Near-wall flow not captured well

Faurie, J. et al., IEE transactions on ultrasonics, ferroelectrics, and frequency control, 2016
Pruitt, A. et al., Fully self-gated whole-heart 4D flow imaging from a 5-minute scan, 2021

Low spatial resolution:
2.5 − 3mm3

Temporal averaging:
Over scan duration

Noise artifacts:
Non-Gaussian spatial distribution



Improving 4D-Flow MRI – Super-Resolution

Model

Low-resolution, corrupted velocity data High-resolution velocity field



Our Super-Resolution Model – Physics-Informed Neural Network
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Activation function
• Siren (Sitzmann et al. (2020))
• Activation given by:

𝜎 𝑥 = sin 𝑥
with initialisation:

𝑤𝑖~𝒰(− 6/𝑛, 6/𝑛)

Key Ingredients
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Reasoning
• Spectral bias:

• PINNs with standard activations suffer – difficulty 

capturing high-frequency solution modes

• Small-scale flow features not captured 

• Siren addresses this

• Ventricular flow
• Transitional 

• Across range of length and time scales

• Important to capture these features

Key Ingredients

Activation function
• Siren (Sitzmann et al. (2020))
• Activation given by:

𝜎 𝑥 = sin 𝑥
with initialisation:

𝑤𝑖~𝒰(− 6/𝑛, 6/𝑛)



𝒙
σ

σ

σ

σ

σ

σ

𝒖

… ……

layer 1 layer n

ℒ𝑑𝑎𝑡𝑎

Network Loss

ℒ𝑃𝐷𝐸

𝑡 𝑝

𝐼

𝜕𝒙

𝜕𝑡

AD

ℒ𝐵𝐶

4D-Flow data

Endocardial boundary motion

LV

𝜌 𝜕𝑡𝒖 + 𝒖 ∙ ∇ 𝒖 = −∇𝑝 + 𝜇∇2𝒖
∇ ⋅ 𝒖 = 0

Governing equations

Total Loss

ℒ = ℒ𝑃𝐷𝐸 + 𝛼ℒ𝑑𝑎𝑡𝑎 + 𝛽ℒ𝐵𝐶
Continue training

Completed

Y

N
ℒ ≤ 𝜀?

Jin et al (2021)

Dynamic loss weighting
• Scheme proposed in Jin et al. (2021)
• Weights updated as:

ො𝛼𝑘 =
∇𝜃ℒ𝑃𝐷𝐸

|∇𝜃ℒ𝑑𝑎𝑡𝑎|
,     𝛼𝑘 = 1 − 𝜆 𝛼𝑘−1 + 𝜆 ො𝛼𝑘

መ𝛽𝑘 =
∇𝜃ℒ𝑃𝐷𝐸

|∇𝜃ℒ𝐵𝐶|
,      𝛽𝑘 = 1 − 𝜆 𝛽𝑘−1 + 𝜆 መ𝛽𝑘
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Reasoning
• Different loss terms provide different gradient contributions

• Term contributing smaller gradients may not be satisfied

during training

• E.g. boundary condition loss in figure

• More complex PDEs (like Navier-Stokes equations) tend 

to contribute larger gradients
∇𝜃ℒ𝐵𝐶 ∇𝜃ℒ𝑃𝐷𝐸



Experiments: 2D Idealised Ventricle

Vorticity contour plot of CFD results

Valve 
1

Valve 
2

Valve 
2

• Synthetic study designed to validate model

• Simplified, 2D CFD-generated ventricle
• Flow driven by moving boundary

• Highly-resolved mesh

• Small adaptive time-step

• Results in complex flow simulated

Mesh details



2D Idealised Ventricle: Synthetic Data Generation
• Downsample data to match 4D-flow characteristics 



2D Idealised Ventricle: Setup
• Network width: 900 neurons

• Network depth: 9 layers

• Dropout rate: 0.55

• Number of epochs: 30

• Initial learning rate: 𝟏 × 𝟏𝟎−𝟓 (annealing based on plateau of validation loss)

• Optimiser: ADAM

• Total collocation (physics) sample count: 5,986,116 

• Total wall data sample count: 346,572

• Total training time: <3 hours



Results: Velocity Magnitude

Velocity magnitude throughout cardiac cycle

Prediction Ground truth

Training data

nRMSE: 8.49%



Results: Pressure

Velocity magnitude throughout cardiac cycle

Prediction Ground truth

nRMSE: 2.66%



Results: Velocities Training data Prediction Ground truth
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Velocity magnitude at various time steps

• Training data used
• Spatial downsampling factor (each dim): 4

• Temporal downsampling factor: 5

• Signal-to-noise ratio: 6.6 (15% std dev)

• Error:
• Velocity max-normalised RMSE: 6.5%

• Interpolation (cubic spline) RMSE: 11.9%
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Velocity magnitude at various time steps

• Captures features not visible in data!
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Results: Pressure
• No pressure data used in training

• Only constrained by Navier-Stokes equations!
• Only accurate up to a constant

• Error:
• Pressure nRMSE: 5.3%

Prediction Ground truth

Pressure at two time steps



5x temporal upsampling 10x temporal upsampling Ground truth
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• Noise: SNR 10 (10% std dev)
• Q-criterion:

𝑄 =
1

2
( 𝛀 2 − 𝑺 2)

3.56%3.23%



Outlook and Challenges
• We have shown:

• PINNs provide effective super-resolution in the presence of significant data corruption

• We are validating this in 2D and 3D synthetic studies

• Clinical challenges:
• Large uncertainty in boundary motion and location

• Rigorous in vivo validation is required, but challenging

• 4D-flow MRI is already the gold standard blood flow imaging modality

• We have planned a study to acquire 4D-flow MRI at two spatial resolutions

Thank you for listening!


