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Introduction

« NASA CFD 2030 plan
demonstrates need for
accurate models for industrial

flows (Slotnick et al. 2014).

* RANS still not as accurate as
required for industry.

* Accurate methods (LES) exist
but will be expensive for
decades (Widtherden 2016).

« How can we improve RANS
in the meantime?
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Introduction

Corrective, Data-driven RANS closure models

Main idea: Run a RANS simulation, correct the Reynolds
stress tensor, then re-run simulation

Machine learning: Trains a model to predict a "better”

Reynolds stress tensor (e.g., from DNS or LES) from a RANS
simulation

Key issues:

* Training dataset
* Machine learning model architecture & input features
« Conditioning & injection
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Introduction

Novelties:

« Explore applicability of machine learning techniques for an industrially
relevant, complex, 3D flow.

* Previous studies have focused on canonical 2D flows (Ling et al.
2016, Kaandorp & Dwight 2020, McConkey et al. 2022)

» Explore stability and robustness of injected XGBoost predictions

* Previous studies have used random forests (Kaandorp & Dwight
2020), and neural networks (Ling et al. 2016, McConkey et al. 2022)
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Methodology
What should we predict with the model?  Model predicts: V;r, aL
V.- (0U)=-Vp+vV20 - V-1 azf_étr(f)l
a = —ZVZS + a+
“Optimal eddy viscosity” 1
v] = argmin,,>o||la — (—2v,S)|| -
Remainder
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Methodology  what input features should we use?

Key fields: Tensors: Form a minimal integrity
U, p, k - S, R, Ap, Ak ‘ basis for these 4 tensors

Extract the maximum 0 -0k Ok
invariant information dk 0 -0k
from these fields. —0k Ok 0
Take tensor 47 basis
94 invariant - invariants - tensors
scalars h(A) = tr(A)
—AT(tr(A))2 — tr( A2
Input features h(A) = 3[(tr(A))” — tr(A7)]
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Methodology

Input Features Model Target

Model predicts: VI, 61L

94 invariant scalars ‘
derived from U, p, k

« XGBoost - gradient boosted decision trees (Chen 2016)

* Qutperforms neural networks for tabular data regression
problems (Shwartz-Ziv 2022)

* Training performed using multi-GPU HPC nodes (4xA100),
due to large dataset size
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3D flow description
Re = 22,000

* An array of tandem wall
mounted cubes.

* Arange of inlet flow

angles are explored
between a=0°and a=45°

Coupling between cubes
changes with variations in
the parameter space.
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Training

LES
dataset

RANS
Dataset
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Training

RANS Dataset LES dataset
A - Q..‘ e .
- '_/‘
XGBoost .
94 invariant scalars : Model trained tci

derived from U, p, k predict: V:«r, a
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Injection
Standard turbulence model Corrected closure term
=
= XGBoost
&‘3 Model

— RANS equations
— Turbulence equations

[teration

(McConkey et al. 2022) "Qualitative"
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Pressure contours, coloured
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Conclusions

« Confirmed applicability and practicality of machine learning
techniques for industrially relevant, massively separated 3D flows.

« Confirmed stability of injected XGBoost predictions into RANS
equations.

* Developed distributed, multi-GPU XGBoost training code for training

large data-driven turbulence models using large LES datasets on
HPC.

Future work

« Extending framework to unsteady flows.

* Incorporating XGBoost directly into turbulence model.
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