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PRIMARY INSTABILITY: ELEVATOR MODES

The static basic state is unstable 
to elevators of the form

   
where  is the amplitude of 
perturbations. We solve a cubic 
equation for the complex growth 
rate   to determine regions of 
instability.

The unstable mode always has a non-zero imaginary part, i.e., it is a 
growing, oscillatory instability; however, marginal, purely oscillatory modes 
with zero growth rate do exist. Such modes lie on the upper black line in 
Fig. 1 and are the focus of the present study. 

In a 2D infinite domain, for an initial density that is a linear function of 
temperature T, and salt concentration S, i.e.

GOVERNING EQUATIONS

A large-amplitude basic state forces a shear-driven secondary mode with         .

A moderate-amplitude basic state produces a previously undocumented mode with
non-zero    and    . This is likely a diffusive instability as it is not observed in high-
inertia systems, but is prevelent in low-inertia systems. 

Secondary instabilities depend on the level of shear -- how does       influence     ?  

CONCLUSIONS AND FUTURE WORK
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SECONDARY INSTABILITY: FLOQUET EXPANSION

GROWTH RATES OF SECONDARY INSTABILITIES

Conditions: 

We investigate the role of heat and salt by studying the stability of oscillatory 
hydrodynamic (i.e. zero T and S) sinusoidal shear modes. Such systems have 
been well-studied [5,6]. Note that          is analagous to a Reynolds number,     .

The most unstable modes always have         , and     increases with increasing     . 

In the heat-salt (HS) system, a large      corresponds to a large Reynolds number, 
and hence the          mode is likely a shear-driven instability.

In the HS system, at very large      (low     ) we see only the intermediate mode, 
whereas at low     (high     ) we see only the shear mode.
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INTRODUCTION

Heat diffuses quicker than salt, so a parcel displaced downwards will rapidly 
heat up and return to its original position while maintaining its salt content. The 
parcel may then be warmer than its surroundings, leading to an overshoot and 
subsequent cooling. This process repeats and may lead to growing oscillations.
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Double-diffusive convection (DDC) arises when two competing elements, such 
as heat and salt, drive fluid motion through bouyancy effects. Two 
configurations exist: 'diffusive convection' is seen in the arctic ocean where 
glacial outflow (cold, fresh) lies over warmer (but still cold!), and saltier 
seawater; 'salt-fingering' occurs in the tropics where surface evaporation leaves 
warm, salty water above the cold, fresh outflow from rivers. We look at the 
former case -- diffusive convection; salt-fingers have been well studied [1,2].

The fastest-growing mode (FGM) is a sinusoidal, vertically independent 
'elevator' mode which is a non-linear solution to the governing equations -- a 
solution that grows indefinitely. 

We seek to answer this question in relation to the diffusive regime, building 
upon previous work for salt-fingers [3,4].

Is the nonlinear elevator istelf stable, especially at large amplitudes 
when it creates large density perturbations and strong shears?

where      is the Prandtl number,    is the ratio of diffusivities, and        is the 
density gradient ratio, representing the relative strength of background 
temperature and salinity gradients. In the ocean, we have
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where   is the viscosity, and    and    are the diffusivities of heat and salt 
respectively. 

Fig. 1: Growth rates of elevator modes.

where      and      are integers. Expanding in this way and truncating at                      
and                , we obtain an eigenvalue problem of the form

where A is a matrix of size 3(2N+1)(2M+1). We obtain a spectrum of 
eigenvalues    with corresponding eigenvectors                    , selecting only 
those with the largest growth rates. 

Convergence is generally achieved when                 , with higher     requiring 
additional modes. 

where    and    are coefficients of expansion; and with uniform gradients     
and     , the dimensionless governing Boussinesq equations are

The oscillatory elevator modes introduce periodic coefficients in time and space 
into the equations governing secondary perturbations. We expand 
perturbations in the following double-Floquet form:   

When           we see an elevator mode (        ). This has the same horizontal 
scale as the fastest growing mode from linear theory (              , see Fig 1).

When         the system is unstable to an oscillatory 'intermediate' mode with 
non-zero   and    . This mode has not been observed in previous studies.

When        the intermediate mode gives way to an oscillatory 'shear' mode 
with        . As      is increased further,     increases in tow.
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